1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include "cache_dev.h"
#include "cache.h"
#include "backing_dev.h"
#include "dm_pcache.h"
static inline struct pcache_segment_info *get_seg_info_addr(struct pcache_cache_segment *cache_seg)
{
struct pcache_segment_info *seg_info_addr;
u32 seg_id = cache_seg->segment.seg_id;
void *seg_addr;
seg_addr = CACHE_DEV_SEGMENT(cache_seg->cache->cache_dev, seg_id);
seg_info_addr = seg_addr + PCACHE_SEG_INFO_SIZE * cache_seg->info_index;
return seg_info_addr;
}
static void cache_seg_info_write(struct pcache_cache_segment *cache_seg)
{
struct pcache_segment_info *seg_info_addr;
struct pcache_segment_info *seg_info = &cache_seg->cache_seg_info;
mutex_lock(&cache_seg->info_lock);
seg_info->header.seq++;
seg_info->header.crc = pcache_meta_crc(&seg_info->header, sizeof(struct pcache_segment_info));
cache_seg->info_index = (cache_seg->info_index + 1) % PCACHE_META_INDEX_MAX;
seg_info_addr = get_seg_info_addr(cache_seg);
memcpy_flushcache(seg_info_addr, seg_info, sizeof(struct pcache_segment_info));
pmem_wmb();
mutex_unlock(&cache_seg->info_lock);
}
static int cache_seg_info_load(struct pcache_cache_segment *cache_seg)
{
struct pcache_segment_info *cache_seg_info_addr_base, *cache_seg_info_addr;
struct pcache_cache_dev *cache_dev = cache_seg->cache->cache_dev;
struct dm_pcache *pcache = CACHE_DEV_TO_PCACHE(cache_dev);
u32 seg_id = cache_seg->segment.seg_id;
int ret = 0;
cache_seg_info_addr_base = CACHE_DEV_SEGMENT(cache_dev, seg_id);
mutex_lock(&cache_seg->info_lock);
cache_seg_info_addr = pcache_meta_find_latest(&cache_seg_info_addr_base->header,
sizeof(struct pcache_segment_info),
PCACHE_SEG_INFO_SIZE,
&cache_seg->cache_seg_info);
if (IS_ERR(cache_seg_info_addr)) {
ret = PTR_ERR(cache_seg_info_addr);
goto out;
} else if (!cache_seg_info_addr) {
ret = -EIO;
goto out;
}
cache_seg->info_index = cache_seg_info_addr - cache_seg_info_addr_base;
out:
mutex_unlock(&cache_seg->info_lock);
if (ret)
pcache_dev_err(pcache, "can't read segment info of segment: %u, ret: %d\n",
cache_seg->segment.seg_id, ret);
return ret;
}
static int cache_seg_ctrl_load(struct pcache_cache_segment *cache_seg)
{
struct pcache_cache_seg_ctrl *cache_seg_ctrl = cache_seg->cache_seg_ctrl;
struct pcache_cache_seg_gen cache_seg_gen, *cache_seg_gen_addr;
int ret = 0;
cache_seg_gen_addr = pcache_meta_find_latest(&cache_seg_ctrl->gen->header,
sizeof(struct pcache_cache_seg_gen),
sizeof(struct pcache_cache_seg_gen),
&cache_seg_gen);
if (IS_ERR(cache_seg_gen_addr)) {
ret = PTR_ERR(cache_seg_gen_addr);
goto out;
}
if (!cache_seg_gen_addr) {
cache_seg->gen = 0;
cache_seg->gen_seq = 0;
cache_seg->gen_index = 0;
goto out;
}
cache_seg->gen = cache_seg_gen.gen;
cache_seg->gen_seq = cache_seg_gen.header.seq;
cache_seg->gen_index = (cache_seg_gen_addr - cache_seg_ctrl->gen);
out:
return ret;
}
static inline struct pcache_cache_seg_gen *get_cache_seg_gen_addr(struct pcache_cache_segment *cache_seg)
{
struct pcache_cache_seg_ctrl *cache_seg_ctrl = cache_seg->cache_seg_ctrl;
return (cache_seg_ctrl->gen + cache_seg->gen_index);
}
/*
* cache_seg_ctrl_write - write cache segment control information
* @seg: the cache segment to update
*
* This function writes the control information of a cache segment to media.
*
* Although this updates shared control data, we intentionally do not use
* any locking here. All accesses to control information are single-threaded:
*
* - All reads occur during the init phase, where no concurrent writes
* can happen.
* - Writes happen once during init and once when the last reference
* to the segment is dropped in cache_seg_put().
*
* Both cases are guaranteed to be single-threaded, so there is no risk
* of concurrent read/write races.
*/
static void cache_seg_ctrl_write(struct pcache_cache_segment *cache_seg)
{
struct pcache_cache_seg_gen cache_seg_gen;
cache_seg_gen.gen = cache_seg->gen;
cache_seg_gen.header.seq = ++cache_seg->gen_seq;
cache_seg_gen.header.crc = pcache_meta_crc(&cache_seg_gen.header,
sizeof(struct pcache_cache_seg_gen));
cache_seg->gen_index = (cache_seg->gen_index + 1) % PCACHE_META_INDEX_MAX;
memcpy_flushcache(get_cache_seg_gen_addr(cache_seg), &cache_seg_gen, sizeof(struct pcache_cache_seg_gen));
pmem_wmb();
}
static void cache_seg_ctrl_init(struct pcache_cache_segment *cache_seg)
{
cache_seg->gen = 0;
cache_seg->gen_seq = 0;
cache_seg->gen_index = 0;
cache_seg_ctrl_write(cache_seg);
}
static int cache_seg_meta_load(struct pcache_cache_segment *cache_seg)
{
int ret;
ret = cache_seg_info_load(cache_seg);
if (ret)
goto err;
ret = cache_seg_ctrl_load(cache_seg);
if (ret)
goto err;
return 0;
err:
return ret;
}
/**
* cache_seg_set_next_seg - Sets the ID of the next segment
* @cache_seg: Pointer to the cache segment structure.
* @seg_id: The segment ID to set as the next segment.
*
* A pcache_cache allocates multiple cache segments, which are linked together
* through next_seg. When loading a pcache_cache, the first cache segment can
* be found using cache->seg_id, which allows access to all the cache segments.
*/
void cache_seg_set_next_seg(struct pcache_cache_segment *cache_seg, u32 seg_id)
{
cache_seg->cache_seg_info.flags |= PCACHE_SEG_INFO_FLAGS_HAS_NEXT;
cache_seg->cache_seg_info.next_seg = seg_id;
cache_seg_info_write(cache_seg);
}
int cache_seg_init(struct pcache_cache *cache, u32 seg_id, u32 cache_seg_id,
bool new_cache)
{
struct pcache_cache_dev *cache_dev = cache->cache_dev;
struct pcache_cache_segment *cache_seg = &cache->segments[cache_seg_id];
struct pcache_segment_init_options seg_options = { 0 };
struct pcache_segment *segment = &cache_seg->segment;
int ret;
cache_seg->cache = cache;
cache_seg->cache_seg_id = cache_seg_id;
spin_lock_init(&cache_seg->gen_lock);
atomic_set(&cache_seg->refs, 0);
mutex_init(&cache_seg->info_lock);
/* init pcache_segment */
seg_options.type = PCACHE_SEGMENT_TYPE_CACHE_DATA;
seg_options.data_off = PCACHE_CACHE_SEG_CTRL_OFF + PCACHE_CACHE_SEG_CTRL_SIZE;
seg_options.seg_id = seg_id;
seg_options.seg_info = &cache_seg->cache_seg_info;
pcache_segment_init(cache_dev, segment, &seg_options);
cache_seg->cache_seg_ctrl = CACHE_DEV_SEGMENT(cache_dev, seg_id) + PCACHE_CACHE_SEG_CTRL_OFF;
if (new_cache) {
cache_dev_zero_range(cache_dev, CACHE_DEV_SEGMENT(cache_dev, seg_id),
PCACHE_SEG_INFO_SIZE * PCACHE_META_INDEX_MAX +
PCACHE_CACHE_SEG_CTRL_SIZE);
cache_seg_ctrl_init(cache_seg);
cache_seg->info_index = 0;
cache_seg_info_write(cache_seg);
/* clear outdated kset in segment */
memcpy_flushcache(segment->data, &pcache_empty_kset, sizeof(struct pcache_cache_kset_onmedia));
pmem_wmb();
} else {
ret = cache_seg_meta_load(cache_seg);
if (ret)
goto err;
}
return 0;
err:
return ret;
}
/**
* get_cache_segment - Retrieves a free cache segment from the cache.
* @cache: Pointer to the cache structure.
*
* This function attempts to find a free cache segment that can be used.
* It locks the segment map and checks for the next available segment ID.
* If a free segment is found, it initializes it and returns a pointer to the
* cache segment structure. Returns NULL if no segments are available.
*/
struct pcache_cache_segment *get_cache_segment(struct pcache_cache *cache)
{
struct pcache_cache_segment *cache_seg;
u32 seg_id;
spin_lock(&cache->seg_map_lock);
again:
seg_id = find_next_zero_bit(cache->seg_map, cache->n_segs, cache->last_cache_seg);
if (seg_id == cache->n_segs) {
/* reset the hint of ->last_cache_seg and retry */
if (cache->last_cache_seg) {
cache->last_cache_seg = 0;
goto again;
}
cache->cache_full = true;
spin_unlock(&cache->seg_map_lock);
return NULL;
}
/*
* found an available cache_seg, mark it used in seg_map
* and update the search hint ->last_cache_seg
*/
__set_bit(seg_id, cache->seg_map);
cache->last_cache_seg = seg_id;
spin_unlock(&cache->seg_map_lock);
cache_seg = &cache->segments[seg_id];
cache_seg->cache_seg_id = seg_id;
return cache_seg;
}
static void cache_seg_gen_increase(struct pcache_cache_segment *cache_seg)
{
spin_lock(&cache_seg->gen_lock);
cache_seg->gen++;
spin_unlock(&cache_seg->gen_lock);
cache_seg_ctrl_write(cache_seg);
}
void cache_seg_get(struct pcache_cache_segment *cache_seg)
{
atomic_inc(&cache_seg->refs);
}
static void cache_seg_invalidate(struct pcache_cache_segment *cache_seg)
{
struct pcache_cache *cache;
cache = cache_seg->cache;
cache_seg_gen_increase(cache_seg);
spin_lock(&cache->seg_map_lock);
if (cache->cache_full)
cache->cache_full = false;
__clear_bit(cache_seg->cache_seg_id, cache->seg_map);
spin_unlock(&cache->seg_map_lock);
pcache_defer_reqs_kick(CACHE_TO_PCACHE(cache));
/* clean_work will clean the bad key in key_tree*/
queue_work(cache_get_wq(cache), &cache->clean_work);
}
void cache_seg_put(struct pcache_cache_segment *cache_seg)
{
if (atomic_dec_and_test(&cache_seg->refs))
cache_seg_invalidate(cache_seg);
}
|