1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Resource Director Technology(RDT)
* - Monitoring code
*
* Copyright (C) 2017 Intel Corporation
*
* Author:
* Vikas Shivappa <vikas.shivappa@intel.com>
*
* This replaces the cqm.c based on perf but we reuse a lot of
* code and datastructures originally from Peter Zijlstra and Matt Fleming.
*
* More information about RDT be found in the Intel (R) x86 Architecture
* Software Developer Manual June 2016, volume 3, section 17.17.
*/
#define pr_fmt(fmt) "resctrl: " fmt
#include <linux/cpu.h>
#include <linux/resctrl.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include "monitor_trace.h"
/**
* struct rmid_entry - dirty tracking for all RMID.
* @closid: The CLOSID for this entry.
* @rmid: The RMID for this entry.
* @busy: The number of domains with cached data using this RMID.
* @list: Member of the rmid_free_lru list when busy == 0.
*
* Depending on the architecture the correct monitor is accessed using
* both @closid and @rmid, or @rmid only.
*
* Take the rdtgroup_mutex when accessing.
*/
struct rmid_entry {
u32 closid;
u32 rmid;
int busy;
struct list_head list;
};
/*
* @rmid_free_lru - A least recently used list of free RMIDs
* These RMIDs are guaranteed to have an occupancy less than the
* threshold occupancy
*/
static LIST_HEAD(rmid_free_lru);
/*
* @closid_num_dirty_rmid The number of dirty RMID each CLOSID has.
* Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined.
* Indexed by CLOSID. Protected by rdtgroup_mutex.
*/
static u32 *closid_num_dirty_rmid;
/*
* @rmid_limbo_count - count of currently unused but (potentially)
* dirty RMIDs.
* This counts RMIDs that no one is currently using but that
* may have a occupancy value > resctrl_rmid_realloc_threshold. User can
* change the threshold occupancy value.
*/
static unsigned int rmid_limbo_count;
/*
* @rmid_entry - The entry in the limbo and free lists.
*/
static struct rmid_entry *rmid_ptrs;
/*
* This is the threshold cache occupancy in bytes at which we will consider an
* RMID available for re-allocation.
*/
unsigned int resctrl_rmid_realloc_threshold;
/*
* This is the maximum value for the reallocation threshold, in bytes.
*/
unsigned int resctrl_rmid_realloc_limit;
/*
* x86 and arm64 differ in their handling of monitoring.
* x86's RMID are independent numbers, there is only one source of traffic
* with an RMID value of '1'.
* arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of
* traffic with a PMG value of '1', one for each CLOSID, meaning the RMID
* value is no longer unique.
* To account for this, resctrl uses an index. On x86 this is just the RMID,
* on arm64 it encodes the CLOSID and RMID. This gives a unique number.
*
* The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code
* must accept an attempt to read every index.
*/
static inline struct rmid_entry *__rmid_entry(u32 idx)
{
struct rmid_entry *entry;
u32 closid, rmid;
entry = &rmid_ptrs[idx];
resctrl_arch_rmid_idx_decode(idx, &closid, &rmid);
WARN_ON_ONCE(entry->closid != closid);
WARN_ON_ONCE(entry->rmid != rmid);
return entry;
}
static void limbo_release_entry(struct rmid_entry *entry)
{
lockdep_assert_held(&rdtgroup_mutex);
rmid_limbo_count--;
list_add_tail(&entry->list, &rmid_free_lru);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]--;
}
/*
* Check the RMIDs that are marked as busy for this domain. If the
* reported LLC occupancy is below the threshold clear the busy bit and
* decrement the count. If the busy count gets to zero on an RMID, we
* free the RMID
*/
void __check_limbo(struct rdt_mon_domain *d, bool force_free)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
struct rmid_entry *entry;
u32 idx, cur_idx = 1;
void *arch_mon_ctx;
bool rmid_dirty;
u64 val = 0;
arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID);
if (IS_ERR(arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(arch_mon_ctx));
return;
}
/*
* Skip RMID 0 and start from RMID 1 and check all the RMIDs that
* are marked as busy for occupancy < threshold. If the occupancy
* is less than the threshold decrement the busy counter of the
* RMID and move it to the free list when the counter reaches 0.
*/
for (;;) {
idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx);
if (idx >= idx_limit)
break;
entry = __rmid_entry(idx);
if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid,
QOS_L3_OCCUP_EVENT_ID, &val,
arch_mon_ctx)) {
rmid_dirty = true;
} else {
rmid_dirty = (val >= resctrl_rmid_realloc_threshold);
/*
* x86's CLOSID and RMID are independent numbers, so the entry's
* CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the
* RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't
* used to select the configuration. It is thus necessary to track both
* CLOSID and RMID because there may be dependencies between them
* on some architectures.
*/
trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val);
}
if (force_free || !rmid_dirty) {
clear_bit(idx, d->rmid_busy_llc);
if (!--entry->busy)
limbo_release_entry(entry);
}
cur_idx = idx + 1;
}
resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx);
}
bool has_busy_rmid(struct rdt_mon_domain *d)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit;
}
static struct rmid_entry *resctrl_find_free_rmid(u32 closid)
{
struct rmid_entry *itr;
u32 itr_idx, cmp_idx;
if (list_empty(&rmid_free_lru))
return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC);
list_for_each_entry(itr, &rmid_free_lru, list) {
/*
* Get the index of this free RMID, and the index it would need
* to be if it were used with this CLOSID.
* If the CLOSID is irrelevant on this architecture, the two
* index values are always the same on every entry and thus the
* very first entry will be returned.
*/
itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid);
cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid);
if (itr_idx == cmp_idx)
return itr;
}
return ERR_PTR(-ENOSPC);
}
/**
* resctrl_find_cleanest_closid() - Find a CLOSID where all the associated
* RMID are clean, or the CLOSID that has
* the most clean RMID.
*
* MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID
* may not be able to allocate clean RMID. To avoid this the allocator will
* choose the CLOSID with the most clean RMID.
*
* When the CLOSID and RMID are independent numbers, the first free CLOSID will
* be returned.
*/
int resctrl_find_cleanest_closid(void)
{
u32 cleanest_closid = ~0;
int i = 0;
lockdep_assert_held(&rdtgroup_mutex);
if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
return -EIO;
for (i = 0; i < closids_supported(); i++) {
int num_dirty;
if (closid_allocated(i))
continue;
num_dirty = closid_num_dirty_rmid[i];
if (num_dirty == 0)
return i;
if (cleanest_closid == ~0)
cleanest_closid = i;
if (num_dirty < closid_num_dirty_rmid[cleanest_closid])
cleanest_closid = i;
}
if (cleanest_closid == ~0)
return -ENOSPC;
return cleanest_closid;
}
/*
* For MPAM the RMID value is not unique, and has to be considered with
* the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which
* allows all domains to be managed by a single free list.
* Each domain also has a rmid_busy_llc to reduce the work of the limbo handler.
*/
int alloc_rmid(u32 closid)
{
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
entry = resctrl_find_free_rmid(closid);
if (IS_ERR(entry))
return PTR_ERR(entry);
list_del(&entry->list);
return entry->rmid;
}
static void add_rmid_to_limbo(struct rmid_entry *entry)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
struct rdt_mon_domain *d;
u32 idx;
lockdep_assert_held(&rdtgroup_mutex);
/* Walking r->domains, ensure it can't race with cpuhp */
lockdep_assert_cpus_held();
idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid);
entry->busy = 0;
list_for_each_entry(d, &r->mon_domains, hdr.list) {
/*
* For the first limbo RMID in the domain,
* setup up the limbo worker.
*/
if (!has_busy_rmid(d))
cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL,
RESCTRL_PICK_ANY_CPU);
set_bit(idx, d->rmid_busy_llc);
entry->busy++;
}
rmid_limbo_count++;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID))
closid_num_dirty_rmid[entry->closid]++;
}
void free_rmid(u32 closid, u32 rmid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
struct rmid_entry *entry;
lockdep_assert_held(&rdtgroup_mutex);
/*
* Do not allow the default rmid to be free'd. Comparing by index
* allows architectures that ignore the closid parameter to avoid an
* unnecessary check.
*/
if (!resctrl_arch_mon_capable() ||
idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID))
return;
entry = __rmid_entry(idx);
if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID))
add_rmid_to_limbo(entry);
else
list_add_tail(&entry->list, &rmid_free_lru);
}
static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid,
u32 rmid, enum resctrl_event_id evtid)
{
u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid);
struct mbm_state *state;
if (!resctrl_is_mbm_event(evtid))
return NULL;
state = d->mbm_states[MBM_STATE_IDX(evtid)];
return state ? &state[idx] : NULL;
}
/*
* mbm_cntr_get() - Return the counter ID for the matching @evtid and @rdtgrp.
*
* Return:
* Valid counter ID on success, or -ENOENT on failure.
*/
static int mbm_cntr_get(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
{
int cntr_id;
if (!r->mon.mbm_cntr_assignable)
return -ENOENT;
if (!resctrl_is_mbm_event(evtid))
return -ENOENT;
for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
if (d->cntr_cfg[cntr_id].rdtgrp == rdtgrp &&
d->cntr_cfg[cntr_id].evtid == evtid)
return cntr_id;
}
return -ENOENT;
}
/*
* mbm_cntr_alloc() - Initialize and return a new counter ID in the domain @d.
* Caller must ensure that the specified event is not assigned already.
*
* Return:
* Valid counter ID on success, or -ENOSPC on failure.
*/
static int mbm_cntr_alloc(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
{
int cntr_id;
for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) {
if (!d->cntr_cfg[cntr_id].rdtgrp) {
d->cntr_cfg[cntr_id].rdtgrp = rdtgrp;
d->cntr_cfg[cntr_id].evtid = evtid;
return cntr_id;
}
}
return -ENOSPC;
}
/*
* mbm_cntr_free() - Clear the counter ID configuration details in the domain @d.
*/
static void mbm_cntr_free(struct rdt_mon_domain *d, int cntr_id)
{
memset(&d->cntr_cfg[cntr_id], 0, sizeof(*d->cntr_cfg));
}
static int __mon_event_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
{
int cpu = smp_processor_id();
u32 closid = rdtgrp->closid;
u32 rmid = rdtgrp->mon.rmid;
struct rdt_mon_domain *d;
int cntr_id = -ENOENT;
struct mbm_state *m;
int err, ret;
u64 tval = 0;
if (rr->is_mbm_cntr) {
cntr_id = mbm_cntr_get(rr->r, rr->d, rdtgrp, rr->evtid);
if (cntr_id < 0) {
rr->err = -ENOENT;
return -EINVAL;
}
}
if (rr->first) {
if (rr->is_mbm_cntr)
resctrl_arch_reset_cntr(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid);
else
resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid);
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (m)
memset(m, 0, sizeof(struct mbm_state));
return 0;
}
if (rr->d) {
/* Reading a single domain, must be on a CPU in that domain. */
if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask))
return -EINVAL;
if (rr->is_mbm_cntr)
rr->err = resctrl_arch_cntr_read(rr->r, rr->d, closid, rmid, cntr_id,
rr->evtid, &tval);
else
rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (rr->err)
return rr->err;
rr->val += tval;
return 0;
}
/* Summing domains that share a cache, must be on a CPU for that cache. */
if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map))
return -EINVAL;
/*
* Legacy files must report the sum of an event across all
* domains that share the same L3 cache instance.
* Report success if a read from any domain succeeds, -EINVAL
* (translated to "Unavailable" for user space) if reading from
* all domains fail for any reason.
*/
ret = -EINVAL;
list_for_each_entry(d, &rr->r->mon_domains, hdr.list) {
if (d->ci_id != rr->ci->id)
continue;
if (rr->is_mbm_cntr)
err = resctrl_arch_cntr_read(rr->r, d, closid, rmid, cntr_id,
rr->evtid, &tval);
else
err = resctrl_arch_rmid_read(rr->r, d, closid, rmid,
rr->evtid, &tval, rr->arch_mon_ctx);
if (!err) {
rr->val += tval;
ret = 0;
}
}
if (ret)
rr->err = ret;
return ret;
}
/*
* mbm_bw_count() - Update bw count from values previously read by
* __mon_event_count().
* @rdtgrp: resctrl group associated with the CLOSID and RMID to identify
* the cached mbm_state.
* @rr: The struct rmid_read populated by __mon_event_count().
*
* Supporting function to calculate the memory bandwidth
* and delta bandwidth in MBps. The chunks value previously read by
* __mon_event_count() is compared with the chunks value from the previous
* invocation. This must be called once per second to maintain values in MBps.
*/
static void mbm_bw_count(struct rdtgroup *rdtgrp, struct rmid_read *rr)
{
u64 cur_bw, bytes, cur_bytes;
u32 closid = rdtgrp->closid;
u32 rmid = rdtgrp->mon.rmid;
struct mbm_state *m;
m = get_mbm_state(rr->d, closid, rmid, rr->evtid);
if (WARN_ON_ONCE(!m))
return;
cur_bytes = rr->val;
bytes = cur_bytes - m->prev_bw_bytes;
m->prev_bw_bytes = cur_bytes;
cur_bw = bytes / SZ_1M;
m->prev_bw = cur_bw;
}
/*
* This is scheduled by mon_event_read() to read the CQM/MBM counters
* on a domain.
*/
void mon_event_count(void *info)
{
struct rdtgroup *rdtgrp, *entry;
struct rmid_read *rr = info;
struct list_head *head;
int ret;
rdtgrp = rr->rgrp;
ret = __mon_event_count(rdtgrp, rr);
/*
* For Ctrl groups read data from child monitor groups and
* add them together. Count events which are read successfully.
* Discard the rmid_read's reporting errors.
*/
head = &rdtgrp->mon.crdtgrp_list;
if (rdtgrp->type == RDTCTRL_GROUP) {
list_for_each_entry(entry, head, mon.crdtgrp_list) {
if (__mon_event_count(entry, rr) == 0)
ret = 0;
}
}
/*
* __mon_event_count() calls for newly created monitor groups may
* report -EINVAL/Unavailable if the monitor hasn't seen any traffic.
* Discard error if any of the monitor event reads succeeded.
*/
if (ret == 0)
rr->err = 0;
}
static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu,
struct rdt_resource *r)
{
struct rdt_ctrl_domain *d;
lockdep_assert_cpus_held();
list_for_each_entry(d, &r->ctrl_domains, hdr.list) {
/* Find the domain that contains this CPU */
if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask))
return d;
}
return NULL;
}
/*
* Feedback loop for MBA software controller (mba_sc)
*
* mba_sc is a feedback loop where we periodically read MBM counters and
* adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
* that:
*
* current bandwidth(cur_bw) < user specified bandwidth(user_bw)
*
* This uses the MBM counters to measure the bandwidth and MBA throttle
* MSRs to control the bandwidth for a particular rdtgrp. It builds on the
* fact that resctrl rdtgroups have both monitoring and control.
*
* The frequency of the checks is 1s and we just tag along the MBM overflow
* timer. Having 1s interval makes the calculation of bandwidth simpler.
*
* Although MBA's goal is to restrict the bandwidth to a maximum, there may
* be a need to increase the bandwidth to avoid unnecessarily restricting
* the L2 <-> L3 traffic.
*
* Since MBA controls the L2 external bandwidth where as MBM measures the
* L3 external bandwidth the following sequence could lead to such a
* situation.
*
* Consider an rdtgroup which had high L3 <-> memory traffic in initial
* phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
* after some time rdtgroup has mostly L2 <-> L3 traffic.
*
* In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
* throttle MSRs already have low percentage values. To avoid
* unnecessarily restricting such rdtgroups, we also increase the bandwidth.
*/
static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm)
{
u32 closid, rmid, cur_msr_val, new_msr_val;
struct mbm_state *pmbm_data, *cmbm_data;
struct rdt_ctrl_domain *dom_mba;
enum resctrl_event_id evt_id;
struct rdt_resource *r_mba;
struct list_head *head;
struct rdtgroup *entry;
u32 cur_bw, user_bw;
r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA);
evt_id = rgrp->mba_mbps_event;
closid = rgrp->closid;
rmid = rgrp->mon.rmid;
pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id);
if (WARN_ON_ONCE(!pmbm_data))
return;
dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba);
if (!dom_mba) {
pr_warn_once("Failure to get domain for MBA update\n");
return;
}
cur_bw = pmbm_data->prev_bw;
user_bw = dom_mba->mbps_val[closid];
/* MBA resource doesn't support CDP */
cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
/*
* For Ctrl groups read data from child monitor groups.
*/
head = &rgrp->mon.crdtgrp_list;
list_for_each_entry(entry, head, mon.crdtgrp_list) {
cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id);
if (WARN_ON_ONCE(!cmbm_data))
return;
cur_bw += cmbm_data->prev_bw;
}
/*
* Scale up/down the bandwidth linearly for the ctrl group. The
* bandwidth step is the bandwidth granularity specified by the
* hardware.
* Always increase throttling if current bandwidth is above the
* target set by user.
* But avoid thrashing up and down on every poll by checking
* whether a decrease in throttling is likely to push the group
* back over target. E.g. if currently throttling to 30% of bandwidth
* on a system with 10% granularity steps, check whether moving to
* 40% would go past the limit by multiplying current bandwidth by
* "(30 + 10) / 30".
*/
if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
} else if (cur_msr_val < MAX_MBA_BW &&
(user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) {
new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
} else {
return;
}
resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val);
}
static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, enum resctrl_event_id evtid)
{
struct rmid_read rr = {0};
rr.r = r;
rr.d = d;
rr.evtid = evtid;
if (resctrl_arch_mbm_cntr_assign_enabled(r)) {
rr.is_mbm_cntr = true;
} else {
rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid);
if (IS_ERR(rr.arch_mon_ctx)) {
pr_warn_ratelimited("Failed to allocate monitor context: %ld",
PTR_ERR(rr.arch_mon_ctx));
return;
}
}
__mon_event_count(rdtgrp, &rr);
/*
* If the software controller is enabled, compute the
* bandwidth for this event id.
*/
if (is_mba_sc(NULL))
mbm_bw_count(rdtgrp, &rr);
if (rr.arch_mon_ctx)
resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx);
}
static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp)
{
/*
* This is protected from concurrent reads from user as both
* the user and overflow handler hold the global mutex.
*/
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_TOTAL_EVENT_ID);
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_LOCAL_EVENT_ID);
}
/*
* Handler to scan the limbo list and move the RMIDs
* to free list whose occupancy < threshold_occupancy.
*/
void cqm_handle_limbo(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
struct rdt_mon_domain *d;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
d = container_of(work, struct rdt_mon_domain, cqm_limbo.work);
__check_limbo(d, false);
if (has_busy_rmid(d)) {
d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo,
delay);
}
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* cqm_setup_limbo_handler() - Schedule the limbo handler to run for this
* domain.
* @dom: The domain the limbo handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->cqm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
}
void mbm_handle_overflow(struct work_struct *work)
{
unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
struct rdtgroup *prgrp, *crgrp;
struct rdt_mon_domain *d;
struct list_head *head;
struct rdt_resource *r;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
/*
* If the filesystem has been unmounted this work no longer needs to
* run.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
goto out_unlock;
r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
d = container_of(work, struct rdt_mon_domain, mbm_over.work);
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
mbm_update(r, d, prgrp);
head = &prgrp->mon.crdtgrp_list;
list_for_each_entry(crgrp, head, mon.crdtgrp_list)
mbm_update(r, d, crgrp);
if (is_mba_sc(NULL))
update_mba_bw(prgrp, d);
}
/*
* Re-check for housekeeping CPUs. This allows the overflow handler to
* move off a nohz_full CPU quickly.
*/
d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask,
RESCTRL_PICK_ANY_CPU);
schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
}
/**
* mbm_setup_overflow_handler() - Schedule the overflow handler to run for this
* domain.
* @dom: The domain the overflow handler should run for.
* @delay_ms: How far in the future the handler should run.
* @exclude_cpu: Which CPU the handler should not run on,
* RESCTRL_PICK_ANY_CPU to pick any CPU.
*/
void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms,
int exclude_cpu)
{
unsigned long delay = msecs_to_jiffies(delay_ms);
int cpu;
/*
* When a domain comes online there is no guarantee the filesystem is
* mounted. If not, there is no need to catch counter overflow.
*/
if (!resctrl_mounted || !resctrl_arch_mon_capable())
return;
cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu);
dom->mbm_work_cpu = cpu;
if (cpu < nr_cpu_ids)
schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
}
static int dom_data_init(struct rdt_resource *r)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
u32 num_closid = resctrl_arch_get_num_closid(r);
struct rmid_entry *entry = NULL;
int err = 0, i;
u32 idx;
mutex_lock(&rdtgroup_mutex);
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
u32 *tmp;
/*
* If the architecture hasn't provided a sanitised value here,
* this may result in larger arrays than necessary. Resctrl will
* use a smaller system wide value based on the resources in
* use.
*/
tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto out_unlock;
}
closid_num_dirty_rmid = tmp;
}
rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL);
if (!rmid_ptrs) {
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
err = -ENOMEM;
goto out_unlock;
}
for (i = 0; i < idx_limit; i++) {
entry = &rmid_ptrs[i];
INIT_LIST_HEAD(&entry->list);
resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid);
list_add_tail(&entry->list, &rmid_free_lru);
}
/*
* RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and
* are always allocated. These are used for the rdtgroup_default
* control group, which will be setup later in resctrl_init().
*/
idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID,
RESCTRL_RESERVED_RMID);
entry = __rmid_entry(idx);
list_del(&entry->list);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return err;
}
static void dom_data_exit(struct rdt_resource *r)
{
mutex_lock(&rdtgroup_mutex);
if (!r->mon_capable)
goto out_unlock;
if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) {
kfree(closid_num_dirty_rmid);
closid_num_dirty_rmid = NULL;
}
kfree(rmid_ptrs);
rmid_ptrs = NULL;
out_unlock:
mutex_unlock(&rdtgroup_mutex);
}
/*
* All available events. Architecture code marks the ones that
* are supported by a system using resctrl_enable_mon_event()
* to set .enabled.
*/
struct mon_evt mon_event_all[QOS_NUM_EVENTS] = {
[QOS_L3_OCCUP_EVENT_ID] = {
.name = "llc_occupancy",
.evtid = QOS_L3_OCCUP_EVENT_ID,
.rid = RDT_RESOURCE_L3,
},
[QOS_L3_MBM_TOTAL_EVENT_ID] = {
.name = "mbm_total_bytes",
.evtid = QOS_L3_MBM_TOTAL_EVENT_ID,
.rid = RDT_RESOURCE_L3,
},
[QOS_L3_MBM_LOCAL_EVENT_ID] = {
.name = "mbm_local_bytes",
.evtid = QOS_L3_MBM_LOCAL_EVENT_ID,
.rid = RDT_RESOURCE_L3,
},
};
void resctrl_enable_mon_event(enum resctrl_event_id eventid)
{
if (WARN_ON_ONCE(eventid < QOS_FIRST_EVENT || eventid >= QOS_NUM_EVENTS))
return;
if (mon_event_all[eventid].enabled) {
pr_warn("Duplicate enable for event %d\n", eventid);
return;
}
mon_event_all[eventid].enabled = true;
}
bool resctrl_is_mon_event_enabled(enum resctrl_event_id eventid)
{
return eventid >= QOS_FIRST_EVENT && eventid < QOS_NUM_EVENTS &&
mon_event_all[eventid].enabled;
}
u32 resctrl_get_mon_evt_cfg(enum resctrl_event_id evtid)
{
return mon_event_all[evtid].evt_cfg;
}
/**
* struct mbm_transaction - Memory transaction an MBM event can be configured with.
* @name: Name of memory transaction (read, write ...).
* @val: The bit (eg. READS_TO_LOCAL_MEM or READS_TO_REMOTE_MEM) used to
* represent the memory transaction within an event's configuration.
*/
struct mbm_transaction {
char name[32];
u32 val;
};
/* Decoded values for each type of memory transaction. */
static struct mbm_transaction mbm_transactions[NUM_MBM_TRANSACTIONS] = {
{"local_reads", READS_TO_LOCAL_MEM},
{"remote_reads", READS_TO_REMOTE_MEM},
{"local_non_temporal_writes", NON_TEMP_WRITE_TO_LOCAL_MEM},
{"remote_non_temporal_writes", NON_TEMP_WRITE_TO_REMOTE_MEM},
{"local_reads_slow_memory", READS_TO_LOCAL_S_MEM},
{"remote_reads_slow_memory", READS_TO_REMOTE_S_MEM},
{"dirty_victim_writes_all", DIRTY_VICTIMS_TO_ALL_MEM},
};
int event_filter_show(struct kernfs_open_file *of, struct seq_file *seq, void *v)
{
struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
struct rdt_resource *r;
bool sep = false;
int ret = 0, i;
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
r = resctrl_arch_get_resource(mevt->rid);
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
if (mevt->evt_cfg & mbm_transactions[i].val) {
if (sep)
seq_putc(seq, ',');
seq_printf(seq, "%s", mbm_transactions[i].name);
sep = true;
}
}
seq_putc(seq, '\n');
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return ret;
}
int resctrl_mbm_assign_on_mkdir_show(struct kernfs_open_file *of, struct seq_file *s,
void *v)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
int ret = 0;
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
seq_printf(s, "%u\n", r->mon.mbm_assign_on_mkdir);
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return ret;
}
ssize_t resctrl_mbm_assign_on_mkdir_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
bool value;
int ret;
ret = kstrtobool(buf, &value);
if (ret)
return ret;
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
r->mon.mbm_assign_on_mkdir = value;
out_unlock:
mutex_unlock(&rdtgroup_mutex);
return ret ?: nbytes;
}
/*
* mbm_cntr_free_all() - Clear all the counter ID configuration details in the
* domain @d. Called when mbm_assign_mode is changed.
*/
static void mbm_cntr_free_all(struct rdt_resource *r, struct rdt_mon_domain *d)
{
memset(d->cntr_cfg, 0, sizeof(*d->cntr_cfg) * r->mon.num_mbm_cntrs);
}
/*
* resctrl_reset_rmid_all() - Reset all non-architecture states for all the
* supported RMIDs.
*/
static void resctrl_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d)
{
u32 idx_limit = resctrl_arch_system_num_rmid_idx();
enum resctrl_event_id evt;
int idx;
for_each_mbm_event_id(evt) {
if (!resctrl_is_mon_event_enabled(evt))
continue;
idx = MBM_STATE_IDX(evt);
memset(d->mbm_states[idx], 0, sizeof(*d->mbm_states[0]) * idx_limit);
}
}
/*
* rdtgroup_assign_cntr() - Assign/unassign the counter ID for the event, RMID
* pair in the domain.
*
* Assign the counter if @assign is true else unassign the counter. Reset the
* associated non-architectural state.
*/
static void rdtgroup_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
enum resctrl_event_id evtid, u32 rmid, u32 closid,
u32 cntr_id, bool assign)
{
struct mbm_state *m;
resctrl_arch_config_cntr(r, d, evtid, rmid, closid, cntr_id, assign);
m = get_mbm_state(d, closid, rmid, evtid);
if (m)
memset(m, 0, sizeof(*m));
}
/*
* rdtgroup_alloc_assign_cntr() - Allocate a counter ID and assign it to the event
* pointed to by @mevt and the resctrl group @rdtgrp within the domain @d.
*
* Return:
* 0 on success, < 0 on failure.
*/
static int rdtgroup_alloc_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
{
int cntr_id;
/* No action required if the counter is assigned already. */
cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
if (cntr_id >= 0)
return 0;
cntr_id = mbm_cntr_alloc(r, d, rdtgrp, mevt->evtid);
if (cntr_id < 0) {
rdt_last_cmd_printf("Failed to allocate counter for %s in domain %d\n",
mevt->name, d->hdr.id);
return cntr_id;
}
rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true);
return 0;
}
/*
* rdtgroup_assign_cntr_event() - Assign a hardware counter for the event in
* @mevt to the resctrl group @rdtgrp. Assign counters to all domains if @d is
* NULL; otherwise, assign the counter to the specified domain @d.
*
* If all counters in a domain are already in use, rdtgroup_alloc_assign_cntr()
* will fail. The assignment process will abort at the first failure encountered
* during domain traversal, which may result in the event being only partially
* assigned.
*
* Return:
* 0 on success, < 0 on failure.
*/
static int rdtgroup_assign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
struct mon_evt *mevt)
{
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
int ret = 0;
if (!d) {
list_for_each_entry(d, &r->mon_domains, hdr.list) {
ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
if (ret)
return ret;
}
} else {
ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt);
}
return ret;
}
/*
* rdtgroup_assign_cntrs() - Assign counters to MBM events. Called when
* a new group is created.
*
* Each group can accommodate two counters per domain: one for the total
* event and one for the local event. Assignments may fail due to the limited
* number of counters. However, it is not necessary to fail the group creation
* and thus no failure is returned. Users have the option to modify the
* counter assignments after the group has been created.
*/
void rdtgroup_assign_cntrs(struct rdtgroup *rdtgrp)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r) ||
!r->mon.mbm_assign_on_mkdir)
return;
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
rdtgroup_assign_cntr_event(NULL, rdtgrp,
&mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
rdtgroup_assign_cntr_event(NULL, rdtgrp,
&mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
}
/*
* rdtgroup_free_unassign_cntr() - Unassign and reset the counter ID configuration
* for the event pointed to by @mevt within the domain @d and resctrl group @rdtgrp.
*/
static void rdtgroup_free_unassign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
{
int cntr_id;
cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid);
/* If there is no cntr_id assigned, nothing to do */
if (cntr_id < 0)
return;
rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, false);
mbm_cntr_free(d, cntr_id);
}
/*
* rdtgroup_unassign_cntr_event() - Unassign a hardware counter associated with
* the event structure @mevt from the domain @d and the group @rdtgrp. Unassign
* the counters from all the domains if @d is NULL else unassign from @d.
*/
static void rdtgroup_unassign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp,
struct mon_evt *mevt)
{
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
if (!d) {
list_for_each_entry(d, &r->mon_domains, hdr.list)
rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
} else {
rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt);
}
}
/*
* rdtgroup_unassign_cntrs() - Unassign the counters associated with MBM events.
* Called when a group is deleted.
*/
void rdtgroup_unassign_cntrs(struct rdtgroup *rdtgrp)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r))
return;
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
rdtgroup_unassign_cntr_event(NULL, rdtgrp,
&mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]);
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
rdtgroup_unassign_cntr_event(NULL, rdtgrp,
&mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]);
}
static int resctrl_parse_mem_transactions(char *tok, u32 *val)
{
u32 temp_val = 0;
char *evt_str;
bool found;
int i;
next_config:
if (!tok || tok[0] == '\0') {
*val = temp_val;
return 0;
}
/* Start processing the strings for each memory transaction type */
evt_str = strim(strsep(&tok, ","));
found = false;
for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) {
if (!strcmp(mbm_transactions[i].name, evt_str)) {
temp_val |= mbm_transactions[i].val;
found = true;
break;
}
}
if (!found) {
rdt_last_cmd_printf("Invalid memory transaction type %s\n", evt_str);
return -EINVAL;
}
goto next_config;
}
/*
* rdtgroup_update_cntr_event - Update the counter assignments for the event
* in a group.
* @r: Resource to which update needs to be done.
* @rdtgrp: Resctrl group.
* @evtid: MBM monitor event.
*/
static void rdtgroup_update_cntr_event(struct rdt_resource *r, struct rdtgroup *rdtgrp,
enum resctrl_event_id evtid)
{
struct rdt_mon_domain *d;
int cntr_id;
list_for_each_entry(d, &r->mon_domains, hdr.list) {
cntr_id = mbm_cntr_get(r, d, rdtgrp, evtid);
if (cntr_id >= 0)
rdtgroup_assign_cntr(r, d, evtid, rdtgrp->mon.rmid,
rdtgrp->closid, cntr_id, true);
}
}
/*
* resctrl_update_cntr_allrdtgrp - Update the counter assignments for the event
* for all the groups.
* @mevt MBM Monitor event.
*/
static void resctrl_update_cntr_allrdtgrp(struct mon_evt *mevt)
{
struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid);
struct rdtgroup *prgrp, *crgrp;
/*
* Find all the groups where the event is assigned and update the
* configuration of existing assignments.
*/
list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
rdtgroup_update_cntr_event(r, prgrp, mevt->evtid);
list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
rdtgroup_update_cntr_event(r, crgrp, mevt->evtid);
}
}
ssize_t event_filter_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
loff_t off)
{
struct mon_evt *mevt = rdt_kn_parent_priv(of->kn);
struct rdt_resource *r;
u32 evt_cfg = 0;
int ret = 0;
/* Valid input requires a trailing newline */
if (nbytes == 0 || buf[nbytes - 1] != '\n')
return -EINVAL;
buf[nbytes - 1] = '\0';
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
r = resctrl_arch_get_resource(mevt->rid);
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
ret = resctrl_parse_mem_transactions(buf, &evt_cfg);
if (!ret && mevt->evt_cfg != evt_cfg) {
mevt->evt_cfg = evt_cfg;
resctrl_update_cntr_allrdtgrp(mevt);
}
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
return ret ?: nbytes;
}
int resctrl_mbm_assign_mode_show(struct kernfs_open_file *of,
struct seq_file *s, void *v)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
bool enabled;
mutex_lock(&rdtgroup_mutex);
enabled = resctrl_arch_mbm_cntr_assign_enabled(r);
if (r->mon.mbm_cntr_assignable) {
if (enabled)
seq_puts(s, "[mbm_event]\n");
else
seq_puts(s, "[default]\n");
if (!IS_ENABLED(CONFIG_RESCTRL_ASSIGN_FIXED)) {
if (enabled)
seq_puts(s, "default\n");
else
seq_puts(s, "mbm_event\n");
}
} else {
seq_puts(s, "[default]\n");
}
mutex_unlock(&rdtgroup_mutex);
return 0;
}
ssize_t resctrl_mbm_assign_mode_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
struct rdt_mon_domain *d;
int ret = 0;
bool enable;
/* Valid input requires a trailing newline */
if (nbytes == 0 || buf[nbytes - 1] != '\n')
return -EINVAL;
buf[nbytes - 1] = '\0';
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
if (!strcmp(buf, "default")) {
enable = 0;
} else if (!strcmp(buf, "mbm_event")) {
if (r->mon.mbm_cntr_assignable) {
enable = 1;
} else {
ret = -EINVAL;
rdt_last_cmd_puts("mbm_event mode is not supported\n");
goto out_unlock;
}
} else {
ret = -EINVAL;
rdt_last_cmd_puts("Unsupported assign mode\n");
goto out_unlock;
}
if (enable != resctrl_arch_mbm_cntr_assign_enabled(r)) {
ret = resctrl_arch_mbm_cntr_assign_set(r, enable);
if (ret)
goto out_unlock;
/* Update the visibility of BMEC related files */
resctrl_bmec_files_show(r, NULL, !enable);
/*
* Initialize the default memory transaction values for
* total and local events.
*/
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
(READS_TO_LOCAL_MEM |
READS_TO_LOCAL_S_MEM |
NON_TEMP_WRITE_TO_LOCAL_MEM);
/* Enable auto assignment when switching to "mbm_event" mode */
if (enable)
r->mon.mbm_assign_on_mkdir = true;
/*
* Reset all the non-achitectural RMID state and assignable counters.
*/
list_for_each_entry(d, &r->mon_domains, hdr.list) {
mbm_cntr_free_all(r, d);
resctrl_reset_rmid_all(r, d);
}
}
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
return ret ?: nbytes;
}
int resctrl_num_mbm_cntrs_show(struct kernfs_open_file *of,
struct seq_file *s, void *v)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
struct rdt_mon_domain *dom;
bool sep = false;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
list_for_each_entry(dom, &r->mon_domains, hdr.list) {
if (sep)
seq_putc(s, ';');
seq_printf(s, "%d=%d", dom->hdr.id, r->mon.num_mbm_cntrs);
sep = true;
}
seq_putc(s, '\n');
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
return 0;
}
int resctrl_available_mbm_cntrs_show(struct kernfs_open_file *of,
struct seq_file *s, void *v)
{
struct rdt_resource *r = rdt_kn_parent_priv(of->kn);
struct rdt_mon_domain *dom;
bool sep = false;
u32 cntrs, i;
int ret = 0;
cpus_read_lock();
mutex_lock(&rdtgroup_mutex);
rdt_last_cmd_clear();
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
list_for_each_entry(dom, &r->mon_domains, hdr.list) {
if (sep)
seq_putc(s, ';');
cntrs = 0;
for (i = 0; i < r->mon.num_mbm_cntrs; i++) {
if (!dom->cntr_cfg[i].rdtgrp)
cntrs++;
}
seq_printf(s, "%d=%u", dom->hdr.id, cntrs);
sep = true;
}
seq_putc(s, '\n');
out_unlock:
mutex_unlock(&rdtgroup_mutex);
cpus_read_unlock();
return ret;
}
int mbm_L3_assignments_show(struct kernfs_open_file *of, struct seq_file *s, void *v)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
struct rdt_mon_domain *d;
struct rdtgroup *rdtgrp;
struct mon_evt *mevt;
int ret = 0;
bool sep;
rdtgrp = rdtgroup_kn_lock_live(of->kn);
if (!rdtgrp) {
ret = -ENOENT;
goto out_unlock;
}
rdt_last_cmd_clear();
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n");
ret = -EINVAL;
goto out_unlock;
}
for_each_mon_event(mevt) {
if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid))
continue;
sep = false;
seq_printf(s, "%s:", mevt->name);
list_for_each_entry(d, &r->mon_domains, hdr.list) {
if (sep)
seq_putc(s, ';');
if (mbm_cntr_get(r, d, rdtgrp, mevt->evtid) < 0)
seq_printf(s, "%d=_", d->hdr.id);
else
seq_printf(s, "%d=e", d->hdr.id);
sep = true;
}
seq_putc(s, '\n');
}
out_unlock:
rdtgroup_kn_unlock(of->kn);
return ret;
}
/*
* mbm_get_mon_event_by_name() - Return the mon_evt entry for the matching
* event name.
*/
static struct mon_evt *mbm_get_mon_event_by_name(struct rdt_resource *r, char *name)
{
struct mon_evt *mevt;
for_each_mon_event(mevt) {
if (mevt->rid == r->rid && mevt->enabled &&
resctrl_is_mbm_event(mevt->evtid) &&
!strcmp(mevt->name, name))
return mevt;
}
return NULL;
}
static int rdtgroup_modify_assign_state(char *assign, struct rdt_mon_domain *d,
struct rdtgroup *rdtgrp, struct mon_evt *mevt)
{
int ret = 0;
if (!assign || strlen(assign) != 1)
return -EINVAL;
switch (*assign) {
case 'e':
ret = rdtgroup_assign_cntr_event(d, rdtgrp, mevt);
break;
case '_':
rdtgroup_unassign_cntr_event(d, rdtgrp, mevt);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int resctrl_parse_mbm_assignment(struct rdt_resource *r, struct rdtgroup *rdtgrp,
char *event, char *tok)
{
struct rdt_mon_domain *d;
unsigned long dom_id = 0;
char *dom_str, *id_str;
struct mon_evt *mevt;
int ret;
mevt = mbm_get_mon_event_by_name(r, event);
if (!mevt) {
rdt_last_cmd_printf("Invalid event %s\n", event);
return -ENOENT;
}
next:
if (!tok || tok[0] == '\0')
return 0;
/* Start processing the strings for each domain */
dom_str = strim(strsep(&tok, ";"));
id_str = strsep(&dom_str, "=");
/* Check for domain id '*' which means all domains */
if (id_str && *id_str == '*') {
ret = rdtgroup_modify_assign_state(dom_str, NULL, rdtgrp, mevt);
if (ret)
rdt_last_cmd_printf("Assign operation '%s:*=%s' failed\n",
event, dom_str);
return ret;
} else if (!id_str || kstrtoul(id_str, 10, &dom_id)) {
rdt_last_cmd_puts("Missing domain id\n");
return -EINVAL;
}
/* Verify if the dom_id is valid */
list_for_each_entry(d, &r->mon_domains, hdr.list) {
if (d->hdr.id == dom_id) {
ret = rdtgroup_modify_assign_state(dom_str, d, rdtgrp, mevt);
if (ret) {
rdt_last_cmd_printf("Assign operation '%s:%ld=%s' failed\n",
event, dom_id, dom_str);
return ret;
}
goto next;
}
}
rdt_last_cmd_printf("Invalid domain id %ld\n", dom_id);
return -EINVAL;
}
ssize_t mbm_L3_assignments_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
struct rdtgroup *rdtgrp;
char *token, *event;
int ret = 0;
/* Valid input requires a trailing newline */
if (nbytes == 0 || buf[nbytes - 1] != '\n')
return -EINVAL;
buf[nbytes - 1] = '\0';
rdtgrp = rdtgroup_kn_lock_live(of->kn);
if (!rdtgrp) {
rdtgroup_kn_unlock(of->kn);
return -ENOENT;
}
rdt_last_cmd_clear();
if (!resctrl_arch_mbm_cntr_assign_enabled(r)) {
rdt_last_cmd_puts("mbm_event mode is not enabled\n");
rdtgroup_kn_unlock(of->kn);
return -EINVAL;
}
while ((token = strsep(&buf, "\n")) != NULL) {
/*
* The write command follows the following format:
* "<Event>:<Domain ID>=<Assignment state>"
* Extract the event name first.
*/
event = strsep(&token, ":");
ret = resctrl_parse_mbm_assignment(r, rdtgrp, event, token);
if (ret)
break;
}
rdtgroup_kn_unlock(of->kn);
return ret ?: nbytes;
}
/**
* resctrl_mon_resource_init() - Initialise global monitoring structures.
*
* Allocate and initialise global monitor resources that do not belong to a
* specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists.
* Called once during boot after the struct rdt_resource's have been configured
* but before the filesystem is mounted.
* Resctrl's cpuhp callbacks may be called before this point to bring a domain
* online.
*
* Returns 0 for success, or -ENOMEM.
*/
int resctrl_mon_resource_init(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
int ret;
if (!r->mon_capable)
return 0;
ret = dom_data_init(r);
if (ret)
return ret;
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) {
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].configurable = true;
resctrl_file_fflags_init("mbm_total_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) {
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].configurable = true;
resctrl_file_fflags_init("mbm_local_bytes_config",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
}
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID;
else if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID;
if (r->mon.mbm_cntr_assignable) {
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID))
mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask;
if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID))
mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask &
(READS_TO_LOCAL_MEM |
READS_TO_LOCAL_S_MEM |
NON_TEMP_WRITE_TO_LOCAL_MEM);
r->mon.mbm_assign_on_mkdir = true;
resctrl_file_fflags_init("num_mbm_cntrs",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
resctrl_file_fflags_init("available_mbm_cntrs",
RFTYPE_MON_INFO | RFTYPE_RES_CACHE);
resctrl_file_fflags_init("event_filter", RFTYPE_ASSIGN_CONFIG);
resctrl_file_fflags_init("mbm_assign_on_mkdir", RFTYPE_MON_INFO |
RFTYPE_RES_CACHE);
resctrl_file_fflags_init("mbm_L3_assignments", RFTYPE_MON_BASE);
}
return 0;
}
void resctrl_mon_resource_exit(void)
{
struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3);
dom_data_exit(r);
}
|