1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2025 Meta Platforms, Inc. and affiliates. */
#include <linux/bpf_verifier.h>
#include <linux/hashtable.h>
#include <linux/jhash.h>
#include <linux/slab.h>
/*
* This file implements live stack slots analysis. After accumulating
* stack usage data, the analysis answers queries about whether a
* particular stack slot may be read by an instruction or any of it's
* successors. This data is consumed by the verifier states caching
* mechanism to decide which stack slots are important when looking for a
* visited state corresponding to the current state.
*
* The analysis is call chain sensitive, meaning that data is collected
* and queried for tuples (call chain, subprogram instruction index).
* Such sensitivity allows identifying if some subprogram call always
* leads to writes in the caller's stack.
*
* The basic idea is as follows:
* - As the verifier accumulates a set of visited states, the analysis instance
* accumulates a conservative estimate of stack slots that can be read
* or must be written for each visited tuple (call chain, instruction index).
* - If several states happen to visit the same instruction with the same
* call chain, stack usage information for the corresponding tuple is joined:
* - "may_read" set represents a union of all possibly read slots
* (any slot in "may_read" set might be read at or after the instruction);
* - "must_write" set represents an intersection of all possibly written slots
* (any slot in "must_write" set is guaranteed to be written by the instruction).
* - The analysis is split into two phases:
* - read and write marks accumulation;
* - read and write marks propagation.
* - The propagation phase is a textbook live variable data flow analysis:
*
* state[cc, i].live_after = U [state[cc, s].live_before for s in insn_successors(i)]
* state[cc, i].live_before =
* (state[cc, i].live_after / state[cc, i].must_write) U state[i].may_read
*
* Where:
* - `U` stands for set union
* - `/` stands for set difference;
* - `cc` stands for a call chain;
* - `i` and `s` are instruction indexes;
*
* The above equations are computed for each call chain and instruction
* index until state stops changing.
* - Additionally, in order to transfer "must_write" information from a
* subprogram to call instructions invoking this subprogram,
* the "must_write_acc" set is tracked for each (cc, i) tuple.
* A set of stack slots that are guaranteed to be written by this
* instruction or any of its successors (within the subprogram).
* The equation for "must_write_acc" propagation looks as follows:
*
* state[cc, i].must_write_acc =
* ∩ [state[cc, s].must_write_acc for s in insn_successors(i)]
* U state[cc, i].must_write
*
* (An intersection of all "must_write_acc" for instruction successors
* plus all "must_write" slots for the instruction itself).
* - After the propagation phase completes for a subprogram, information from
* (cc, 0) tuple (subprogram entry) is transferred to the caller's call chain:
* - "must_write_acc" set is intersected with the call site's "must_write" set;
* - "may_read" set is added to the call site's "may_read" set.
* - Any live stack queries must be taken after the propagation phase.
* - Accumulation and propagation phases can be entered multiple times,
* at any point in time:
* - "may_read" set only grows;
* - "must_write" set only shrinks;
* - for each visited verifier state with zero branches, all relevant
* read and write marks are already recorded by the analysis instance.
*
* Technically, the analysis is facilitated by the following data structures:
* - Call chain: for given verifier state, the call chain is a tuple of call
* instruction indexes leading to the current subprogram plus the subprogram
* entry point index.
* - Function instance: for a given call chain, for each instruction in
* the current subprogram, a mapping between instruction index and a
* set of "may_read", "must_write" and other marks accumulated for this
* instruction.
* - A hash table mapping call chains to function instances.
*/
struct callchain {
u32 callsites[MAX_CALL_FRAMES]; /* instruction pointer for each frame */
/* cached subprog_info[*].start for functions owning the frames:
* - sp_starts[curframe] used to get insn relative index within current function;
* - sp_starts[0..current-1] used for fast callchain_frame_up().
*/
u32 sp_starts[MAX_CALL_FRAMES];
u32 curframe; /* depth of callsites and sp_starts arrays */
};
struct per_frame_masks {
u64 may_read; /* stack slots that may be read by this instruction */
u64 must_write; /* stack slots written by this instruction */
u64 must_write_acc; /* stack slots written by this instruction and its successors */
u64 live_before; /* stack slots that may be read by this insn and its successors */
};
/*
* A function instance created for a specific callchain.
* Encapsulates read and write marks for each instruction in the function.
* Marks are tracked for each frame in the callchain.
*/
struct func_instance {
struct hlist_node hl_node;
struct callchain callchain;
u32 insn_cnt; /* cached number of insns in the function */
bool updated;
bool must_write_dropped;
/* Per frame, per instruction masks, frames allocated lazily. */
struct per_frame_masks *frames[MAX_CALL_FRAMES];
/* For each instruction a flag telling if "must_write" had been initialized for it. */
bool *must_write_set;
};
struct live_stack_query {
struct func_instance *instances[MAX_CALL_FRAMES]; /* valid in range [0..curframe] */
u32 curframe;
u32 insn_idx;
};
struct bpf_liveness {
DECLARE_HASHTABLE(func_instances, 8); /* maps callchain to func_instance */
struct live_stack_query live_stack_query; /* cache to avoid repetitive ht lookups */
/* Cached instance corresponding to env->cur_state, avoids per-instruction ht lookup */
struct func_instance *cur_instance;
/*
* Below fields are used to accumulate stack write marks for instruction at
* @write_insn_idx before submitting the marks to @cur_instance.
*/
u64 write_masks_acc[MAX_CALL_FRAMES];
u32 write_insn_idx;
};
/* Compute callchain corresponding to state @st at depth @frameno */
static void compute_callchain(struct bpf_verifier_env *env, struct bpf_verifier_state *st,
struct callchain *callchain, u32 frameno)
{
struct bpf_subprog_info *subprog_info = env->subprog_info;
u32 i;
memset(callchain, 0, sizeof(*callchain));
for (i = 0; i <= frameno; i++) {
callchain->sp_starts[i] = subprog_info[st->frame[i]->subprogno].start;
if (i < st->curframe)
callchain->callsites[i] = st->frame[i + 1]->callsite;
}
callchain->curframe = frameno;
callchain->callsites[callchain->curframe] = callchain->sp_starts[callchain->curframe];
}
static u32 hash_callchain(struct callchain *callchain)
{
return jhash2(callchain->callsites, callchain->curframe, 0);
}
static bool same_callsites(struct callchain *a, struct callchain *b)
{
int i;
if (a->curframe != b->curframe)
return false;
for (i = a->curframe; i >= 0; i--)
if (a->callsites[i] != b->callsites[i])
return false;
return true;
}
/*
* Find existing or allocate new function instance corresponding to @callchain.
* Instances are accumulated in env->liveness->func_instances and persist
* until the end of the verification process.
*/
static struct func_instance *__lookup_instance(struct bpf_verifier_env *env,
struct callchain *callchain)
{
struct bpf_liveness *liveness = env->liveness;
struct bpf_subprog_info *subprog;
struct func_instance *result;
u32 subprog_sz, size, key;
key = hash_callchain(callchain);
hash_for_each_possible(liveness->func_instances, result, hl_node, key)
if (same_callsites(&result->callchain, callchain))
return result;
subprog = bpf_find_containing_subprog(env, callchain->sp_starts[callchain->curframe]);
subprog_sz = (subprog + 1)->start - subprog->start;
size = sizeof(struct func_instance);
result = kvzalloc(size, GFP_KERNEL_ACCOUNT);
if (!result)
return ERR_PTR(-ENOMEM);
result->must_write_set = kvcalloc(subprog_sz, sizeof(*result->must_write_set),
GFP_KERNEL_ACCOUNT);
if (!result->must_write_set) {
kvfree(result);
return ERR_PTR(-ENOMEM);
}
memcpy(&result->callchain, callchain, sizeof(*callchain));
result->insn_cnt = subprog_sz;
hash_add(liveness->func_instances, &result->hl_node, key);
return result;
}
static struct func_instance *lookup_instance(struct bpf_verifier_env *env,
struct bpf_verifier_state *st,
u32 frameno)
{
struct callchain callchain;
compute_callchain(env, st, &callchain, frameno);
return __lookup_instance(env, &callchain);
}
int bpf_stack_liveness_init(struct bpf_verifier_env *env)
{
env->liveness = kvzalloc(sizeof(*env->liveness), GFP_KERNEL_ACCOUNT);
if (!env->liveness)
return -ENOMEM;
hash_init(env->liveness->func_instances);
return 0;
}
void bpf_stack_liveness_free(struct bpf_verifier_env *env)
{
struct func_instance *instance;
struct hlist_node *tmp;
int bkt, i;
if (!env->liveness)
return;
hash_for_each_safe(env->liveness->func_instances, bkt, tmp, instance, hl_node) {
for (i = 0; i <= instance->callchain.curframe; i++)
kvfree(instance->frames[i]);
kvfree(instance->must_write_set);
kvfree(instance);
}
kvfree(env->liveness);
}
/*
* Convert absolute instruction index @insn_idx to an index relative
* to start of the function corresponding to @instance.
*/
static int relative_idx(struct func_instance *instance, u32 insn_idx)
{
return insn_idx - instance->callchain.sp_starts[instance->callchain.curframe];
}
static struct per_frame_masks *get_frame_masks(struct func_instance *instance,
u32 frame, u32 insn_idx)
{
if (!instance->frames[frame])
return NULL;
return &instance->frames[frame][relative_idx(instance, insn_idx)];
}
static struct per_frame_masks *alloc_frame_masks(struct bpf_verifier_env *env,
struct func_instance *instance,
u32 frame, u32 insn_idx)
{
struct per_frame_masks *arr;
if (!instance->frames[frame]) {
arr = kvcalloc(instance->insn_cnt, sizeof(*arr), GFP_KERNEL_ACCOUNT);
instance->frames[frame] = arr;
if (!arr)
return ERR_PTR(-ENOMEM);
}
return get_frame_masks(instance, frame, insn_idx);
}
void bpf_reset_live_stack_callchain(struct bpf_verifier_env *env)
{
env->liveness->cur_instance = NULL;
}
/* If @env->liveness->cur_instance is null, set it to instance corresponding to @env->cur_state. */
static int ensure_cur_instance(struct bpf_verifier_env *env)
{
struct bpf_liveness *liveness = env->liveness;
struct func_instance *instance;
if (liveness->cur_instance)
return 0;
instance = lookup_instance(env, env->cur_state, env->cur_state->curframe);
if (IS_ERR(instance))
return PTR_ERR(instance);
liveness->cur_instance = instance;
return 0;
}
/* Accumulate may_read masks for @frame at @insn_idx */
static int mark_stack_read(struct bpf_verifier_env *env,
struct func_instance *instance, u32 frame, u32 insn_idx, u64 mask)
{
struct per_frame_masks *masks;
u64 new_may_read;
masks = alloc_frame_masks(env, instance, frame, insn_idx);
if (IS_ERR(masks))
return PTR_ERR(masks);
new_may_read = masks->may_read | mask;
if (new_may_read != masks->may_read &&
((new_may_read | masks->live_before) != masks->live_before))
instance->updated = true;
masks->may_read |= mask;
return 0;
}
int bpf_mark_stack_read(struct bpf_verifier_env *env, u32 frame, u32 insn_idx, u64 mask)
{
int err;
err = ensure_cur_instance(env);
err = err ?: mark_stack_read(env, env->liveness->cur_instance, frame, insn_idx, mask);
return err;
}
static void reset_stack_write_marks(struct bpf_verifier_env *env,
struct func_instance *instance, u32 insn_idx)
{
struct bpf_liveness *liveness = env->liveness;
int i;
liveness->write_insn_idx = insn_idx;
for (i = 0; i <= instance->callchain.curframe; i++)
liveness->write_masks_acc[i] = 0;
}
int bpf_reset_stack_write_marks(struct bpf_verifier_env *env, u32 insn_idx)
{
struct bpf_liveness *liveness = env->liveness;
int err;
err = ensure_cur_instance(env);
if (err)
return err;
reset_stack_write_marks(env, liveness->cur_instance, insn_idx);
return 0;
}
void bpf_mark_stack_write(struct bpf_verifier_env *env, u32 frame, u64 mask)
{
env->liveness->write_masks_acc[frame] |= mask;
}
static int commit_stack_write_marks(struct bpf_verifier_env *env,
struct func_instance *instance)
{
struct bpf_liveness *liveness = env->liveness;
u32 idx, frame, curframe, old_must_write;
struct per_frame_masks *masks;
u64 mask;
if (!instance)
return 0;
curframe = instance->callchain.curframe;
idx = relative_idx(instance, liveness->write_insn_idx);
for (frame = 0; frame <= curframe; frame++) {
mask = liveness->write_masks_acc[frame];
/* avoid allocating frames for zero masks */
if (mask == 0 && !instance->must_write_set[idx])
continue;
masks = alloc_frame_masks(env, instance, frame, liveness->write_insn_idx);
if (IS_ERR(masks))
return PTR_ERR(masks);
old_must_write = masks->must_write;
/*
* If instruction at this callchain is seen for a first time, set must_write equal
* to @mask. Otherwise take intersection with the previous value.
*/
if (instance->must_write_set[idx])
mask &= old_must_write;
if (old_must_write != mask) {
masks->must_write = mask;
instance->updated = true;
}
if (old_must_write & ~mask)
instance->must_write_dropped = true;
}
instance->must_write_set[idx] = true;
liveness->write_insn_idx = 0;
return 0;
}
/*
* Merge stack writes marks in @env->liveness->write_masks_acc
* with information already in @env->liveness->cur_instance.
*/
int bpf_commit_stack_write_marks(struct bpf_verifier_env *env)
{
return commit_stack_write_marks(env, env->liveness->cur_instance);
}
static char *fmt_callchain(struct bpf_verifier_env *env, struct callchain *callchain)
{
char *buf_end = env->tmp_str_buf + sizeof(env->tmp_str_buf);
char *buf = env->tmp_str_buf;
int i;
buf += snprintf(buf, buf_end - buf, "(");
for (i = 0; i <= callchain->curframe; i++)
buf += snprintf(buf, buf_end - buf, "%s%d", i ? "," : "", callchain->callsites[i]);
snprintf(buf, buf_end - buf, ")");
return env->tmp_str_buf;
}
static void log_mask_change(struct bpf_verifier_env *env, struct callchain *callchain,
char *pfx, u32 frame, u32 insn_idx, u64 old, u64 new)
{
u64 changed_bits = old ^ new;
u64 new_ones = new & changed_bits;
u64 new_zeros = ~new & changed_bits;
if (!changed_bits)
return;
bpf_log(&env->log, "%s frame %d insn %d ", fmt_callchain(env, callchain), frame, insn_idx);
if (new_ones) {
bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_ones);
bpf_log(&env->log, "+%s %s ", pfx, env->tmp_str_buf);
}
if (new_zeros) {
bpf_fmt_stack_mask(env->tmp_str_buf, sizeof(env->tmp_str_buf), new_zeros);
bpf_log(&env->log, "-%s %s", pfx, env->tmp_str_buf);
}
bpf_log(&env->log, "\n");
}
int bpf_jmp_offset(struct bpf_insn *insn)
{
u8 code = insn->code;
if (code == (BPF_JMP32 | BPF_JA))
return insn->imm;
return insn->off;
}
__diag_push();
__diag_ignore_all("-Woverride-init", "Allow field initialization overrides for opcode_info_tbl");
inline int bpf_insn_successors(struct bpf_prog *prog, u32 idx, u32 succ[2])
{
static const struct opcode_info {
bool can_jump;
bool can_fallthrough;
} opcode_info_tbl[256] = {
[0 ... 255] = {.can_jump = false, .can_fallthrough = true},
#define _J(code, ...) \
[BPF_JMP | code] = __VA_ARGS__, \
[BPF_JMP32 | code] = __VA_ARGS__
_J(BPF_EXIT, {.can_jump = false, .can_fallthrough = false}),
_J(BPF_JA, {.can_jump = true, .can_fallthrough = false}),
_J(BPF_JEQ, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JNE, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JLT, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JLE, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JGT, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JGE, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JSGT, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JSGE, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JSLT, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JSLE, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JCOND, {.can_jump = true, .can_fallthrough = true}),
_J(BPF_JSET, {.can_jump = true, .can_fallthrough = true}),
#undef _J
};
struct bpf_insn *insn = &prog->insnsi[idx];
const struct opcode_info *opcode_info;
int i = 0, insn_sz;
opcode_info = &opcode_info_tbl[BPF_CLASS(insn->code) | BPF_OP(insn->code)];
insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
if (opcode_info->can_fallthrough)
succ[i++] = idx + insn_sz;
if (opcode_info->can_jump)
succ[i++] = idx + bpf_jmp_offset(insn) + 1;
return i;
}
__diag_pop();
static struct func_instance *get_outer_instance(struct bpf_verifier_env *env,
struct func_instance *instance)
{
struct callchain callchain = instance->callchain;
/* Adjust @callchain to represent callchain one frame up */
callchain.callsites[callchain.curframe] = 0;
callchain.sp_starts[callchain.curframe] = 0;
callchain.curframe--;
callchain.callsites[callchain.curframe] = callchain.sp_starts[callchain.curframe];
return __lookup_instance(env, &callchain);
}
static u32 callchain_subprog_start(struct callchain *callchain)
{
return callchain->sp_starts[callchain->curframe];
}
/*
* Transfer @may_read and @must_write_acc marks from the first instruction of @instance,
* to the call instruction in function instance calling @instance.
*/
static int propagate_to_outer_instance(struct bpf_verifier_env *env,
struct func_instance *instance)
{
struct callchain *callchain = &instance->callchain;
u32 this_subprog_start, callsite, frame;
struct func_instance *outer_instance;
struct per_frame_masks *insn;
int err;
this_subprog_start = callchain_subprog_start(callchain);
outer_instance = get_outer_instance(env, instance);
callsite = callchain->callsites[callchain->curframe - 1];
reset_stack_write_marks(env, outer_instance, callsite);
for (frame = 0; frame < callchain->curframe; frame++) {
insn = get_frame_masks(instance, frame, this_subprog_start);
if (!insn)
continue;
bpf_mark_stack_write(env, frame, insn->must_write_acc);
err = mark_stack_read(env, outer_instance, frame, callsite, insn->live_before);
if (err)
return err;
}
commit_stack_write_marks(env, outer_instance);
return 0;
}
static inline bool update_insn(struct bpf_verifier_env *env,
struct func_instance *instance, u32 frame, u32 insn_idx)
{
struct bpf_insn_aux_data *aux = env->insn_aux_data;
u64 new_before, new_after, must_write_acc;
struct per_frame_masks *insn, *succ_insn;
u32 succ_num, s, succ[2];
bool changed;
succ_num = bpf_insn_successors(env->prog, insn_idx, succ);
if (unlikely(succ_num == 0))
return false;
changed = false;
insn = get_frame_masks(instance, frame, insn_idx);
new_before = 0;
new_after = 0;
/*
* New "must_write_acc" is an intersection of all "must_write_acc"
* of successors plus all "must_write" slots of instruction itself.
*/
must_write_acc = U64_MAX;
for (s = 0; s < succ_num; ++s) {
succ_insn = get_frame_masks(instance, frame, succ[s]);
new_after |= succ_insn->live_before;
must_write_acc &= succ_insn->must_write_acc;
}
must_write_acc |= insn->must_write;
/*
* New "live_before" is a union of all "live_before" of successors
* minus slots written by instruction plus slots read by instruction.
*/
new_before = (new_after & ~insn->must_write) | insn->may_read;
changed |= new_before != insn->live_before;
changed |= must_write_acc != insn->must_write_acc;
if (unlikely(env->log.level & BPF_LOG_LEVEL2) &&
(insn->may_read || insn->must_write ||
insn_idx == callchain_subprog_start(&instance->callchain) ||
aux[insn_idx].prune_point)) {
log_mask_change(env, &instance->callchain, "live",
frame, insn_idx, insn->live_before, new_before);
log_mask_change(env, &instance->callchain, "written",
frame, insn_idx, insn->must_write_acc, must_write_acc);
}
insn->live_before = new_before;
insn->must_write_acc = must_write_acc;
return changed;
}
/* Fixed-point computation of @live_before and @must_write_acc marks */
static int update_instance(struct bpf_verifier_env *env, struct func_instance *instance)
{
u32 i, frame, po_start, po_end, cnt, this_subprog_start;
struct callchain *callchain = &instance->callchain;
int *insn_postorder = env->cfg.insn_postorder;
struct bpf_subprog_info *subprog;
struct per_frame_masks *insn;
bool changed;
int err;
this_subprog_start = callchain_subprog_start(callchain);
/*
* If must_write marks were updated must_write_acc needs to be reset
* (to account for the case when new must_write sets became smaller).
*/
if (instance->must_write_dropped) {
for (frame = 0; frame <= callchain->curframe; frame++) {
if (!instance->frames[frame])
continue;
for (i = 0; i < instance->insn_cnt; i++) {
insn = get_frame_masks(instance, frame, this_subprog_start + i);
insn->must_write_acc = 0;
}
}
}
subprog = bpf_find_containing_subprog(env, this_subprog_start);
po_start = subprog->postorder_start;
po_end = (subprog + 1)->postorder_start;
cnt = 0;
/* repeat until fixed point is reached */
do {
cnt++;
changed = false;
for (frame = 0; frame <= instance->callchain.curframe; frame++) {
if (!instance->frames[frame])
continue;
for (i = po_start; i < po_end; i++)
changed |= update_insn(env, instance, frame, insn_postorder[i]);
}
} while (changed);
if (env->log.level & BPF_LOG_LEVEL2)
bpf_log(&env->log, "%s live stack update done in %d iterations\n",
fmt_callchain(env, callchain), cnt);
/* transfer marks accumulated for outer frames to outer func instance (caller) */
if (callchain->curframe > 0) {
err = propagate_to_outer_instance(env, instance);
if (err)
return err;
}
return 0;
}
/*
* Prepare all callchains within @env->cur_state for querying.
* This function should be called after each verifier.c:pop_stack()
* and whenever verifier.c:do_check_insn() processes subprogram exit.
* This would guarantee that visited verifier states with zero branches
* have their bpf_mark_stack_{read,write}() effects propagated in
* @env->liveness.
*/
int bpf_update_live_stack(struct bpf_verifier_env *env)
{
struct func_instance *instance;
int err, frame;
bpf_reset_live_stack_callchain(env);
for (frame = env->cur_state->curframe; frame >= 0; --frame) {
instance = lookup_instance(env, env->cur_state, frame);
if (IS_ERR(instance))
return PTR_ERR(instance);
if (instance->updated) {
err = update_instance(env, instance);
if (err)
return err;
instance->updated = false;
instance->must_write_dropped = false;
}
}
return 0;
}
static bool is_live_before(struct func_instance *instance, u32 insn_idx, u32 frameno, u32 spi)
{
struct per_frame_masks *masks;
masks = get_frame_masks(instance, frameno, insn_idx);
return masks && (masks->live_before & BIT(spi));
}
int bpf_live_stack_query_init(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
{
struct live_stack_query *q = &env->liveness->live_stack_query;
struct func_instance *instance;
u32 frame;
memset(q, 0, sizeof(*q));
for (frame = 0; frame <= st->curframe; frame++) {
instance = lookup_instance(env, st, frame);
if (IS_ERR(instance))
return PTR_ERR(instance);
q->instances[frame] = instance;
}
q->curframe = st->curframe;
q->insn_idx = st->insn_idx;
return 0;
}
bool bpf_stack_slot_alive(struct bpf_verifier_env *env, u32 frameno, u32 spi)
{
/*
* Slot is alive if it is read before q->st->insn_idx in current func instance,
* or if for some outer func instance:
* - alive before callsite if callsite calls callback, otherwise
* - alive after callsite
*/
struct live_stack_query *q = &env->liveness->live_stack_query;
struct func_instance *instance, *curframe_instance;
u32 i, callsite;
bool alive;
curframe_instance = q->instances[q->curframe];
if (is_live_before(curframe_instance, q->insn_idx, frameno, spi))
return true;
for (i = frameno; i < q->curframe; i++) {
callsite = curframe_instance->callchain.callsites[i];
instance = q->instances[i];
alive = bpf_calls_callback(env, callsite)
? is_live_before(instance, callsite, frameno, spi)
: is_live_before(instance, callsite + 1, frameno, spi);
if (alive)
return true;
}
return false;
}
|