1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions
*
* Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
* Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2014 Red Hat Inc.
* Copyright 2025 Google LLC
*/
#include <crypto/hmac.h>
#include <crypto/sha2.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/unaligned.h>
#include <linux/wordpart.h>
static const struct sha256_block_state sha224_iv = {
.h = {
SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
},
};
static const struct sha256_ctx initial_sha256_ctx = {
.ctx = {
.state = {
.h = {
SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
},
},
.bytecount = 0,
},
};
#define sha256_iv (initial_sha256_ctx.ctx.state)
static const u32 sha256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
};
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
#define e0(x) (ror32((x), 2) ^ ror32((x), 13) ^ ror32((x), 22))
#define e1(x) (ror32((x), 6) ^ ror32((x), 11) ^ ror32((x), 25))
#define s0(x) (ror32((x), 7) ^ ror32((x), 18) ^ ((x) >> 3))
#define s1(x) (ror32((x), 17) ^ ror32((x), 19) ^ ((x) >> 10))
static inline void LOAD_OP(int I, u32 *W, const u8 *input)
{
W[I] = get_unaligned_be32((__u32 *)input + I);
}
static inline void BLEND_OP(int I, u32 *W)
{
W[I] = s1(W[I - 2]) + W[I - 7] + s0(W[I - 15]) + W[I - 16];
}
#define SHA256_ROUND(i, a, b, c, d, e, f, g, h) \
do { \
u32 t1, t2; \
t1 = h + e1(e) + Ch(e, f, g) + sha256_K[i] + W[i]; \
t2 = e0(a) + Maj(a, b, c); \
d += t1; \
h = t1 + t2; \
} while (0)
static void sha256_block_generic(struct sha256_block_state *state,
const u8 *input, u32 W[64])
{
u32 a, b, c, d, e, f, g, h;
int i;
/* load the input */
for (i = 0; i < 16; i += 8) {
LOAD_OP(i + 0, W, input);
LOAD_OP(i + 1, W, input);
LOAD_OP(i + 2, W, input);
LOAD_OP(i + 3, W, input);
LOAD_OP(i + 4, W, input);
LOAD_OP(i + 5, W, input);
LOAD_OP(i + 6, W, input);
LOAD_OP(i + 7, W, input);
}
/* now blend */
for (i = 16; i < 64; i += 8) {
BLEND_OP(i + 0, W);
BLEND_OP(i + 1, W);
BLEND_OP(i + 2, W);
BLEND_OP(i + 3, W);
BLEND_OP(i + 4, W);
BLEND_OP(i + 5, W);
BLEND_OP(i + 6, W);
BLEND_OP(i + 7, W);
}
/* load the state into our registers */
a = state->h[0];
b = state->h[1];
c = state->h[2];
d = state->h[3];
e = state->h[4];
f = state->h[5];
g = state->h[6];
h = state->h[7];
/* now iterate */
for (i = 0; i < 64; i += 8) {
SHA256_ROUND(i + 0, a, b, c, d, e, f, g, h);
SHA256_ROUND(i + 1, h, a, b, c, d, e, f, g);
SHA256_ROUND(i + 2, g, h, a, b, c, d, e, f);
SHA256_ROUND(i + 3, f, g, h, a, b, c, d, e);
SHA256_ROUND(i + 4, e, f, g, h, a, b, c, d);
SHA256_ROUND(i + 5, d, e, f, g, h, a, b, c);
SHA256_ROUND(i + 6, c, d, e, f, g, h, a, b);
SHA256_ROUND(i + 7, b, c, d, e, f, g, h, a);
}
state->h[0] += a;
state->h[1] += b;
state->h[2] += c;
state->h[3] += d;
state->h[4] += e;
state->h[5] += f;
state->h[6] += g;
state->h[7] += h;
}
static void __maybe_unused
sha256_blocks_generic(struct sha256_block_state *state,
const u8 *data, size_t nblocks)
{
u32 W[64];
do {
sha256_block_generic(state, data, W);
data += SHA256_BLOCK_SIZE;
} while (--nblocks);
memzero_explicit(W, sizeof(W));
}
#if defined(CONFIG_CRYPTO_LIB_SHA256_ARCH) && !defined(__DISABLE_EXPORTS)
#include "sha256.h" /* $(SRCARCH)/sha256.h */
#else
#define sha256_blocks sha256_blocks_generic
#endif
static void __sha256_init(struct __sha256_ctx *ctx,
const struct sha256_block_state *iv,
u64 initial_bytecount)
{
ctx->state = *iv;
ctx->bytecount = initial_bytecount;
}
void sha224_init(struct sha224_ctx *ctx)
{
__sha256_init(&ctx->ctx, &sha224_iv, 0);
}
EXPORT_SYMBOL_GPL(sha224_init);
void sha256_init(struct sha256_ctx *ctx)
{
__sha256_init(&ctx->ctx, &sha256_iv, 0);
}
EXPORT_SYMBOL_GPL(sha256_init);
void __sha256_update(struct __sha256_ctx *ctx, const u8 *data, size_t len)
{
size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE;
ctx->bytecount += len;
if (partial + len >= SHA256_BLOCK_SIZE) {
size_t nblocks;
if (partial) {
size_t l = SHA256_BLOCK_SIZE - partial;
memcpy(&ctx->buf[partial], data, l);
data += l;
len -= l;
sha256_blocks(&ctx->state, ctx->buf, 1);
}
nblocks = len / SHA256_BLOCK_SIZE;
len %= SHA256_BLOCK_SIZE;
if (nblocks) {
sha256_blocks(&ctx->state, data, nblocks);
data += nblocks * SHA256_BLOCK_SIZE;
}
partial = 0;
}
if (len)
memcpy(&ctx->buf[partial], data, len);
}
EXPORT_SYMBOL(__sha256_update);
static void __sha256_final(struct __sha256_ctx *ctx,
u8 *out, size_t digest_size)
{
u64 bitcount = ctx->bytecount << 3;
size_t partial = ctx->bytecount % SHA256_BLOCK_SIZE;
ctx->buf[partial++] = 0x80;
if (partial > SHA256_BLOCK_SIZE - 8) {
memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - partial);
sha256_blocks(&ctx->state, ctx->buf, 1);
partial = 0;
}
memset(&ctx->buf[partial], 0, SHA256_BLOCK_SIZE - 8 - partial);
*(__be64 *)&ctx->buf[SHA256_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
sha256_blocks(&ctx->state, ctx->buf, 1);
for (size_t i = 0; i < digest_size; i += 4)
put_unaligned_be32(ctx->state.h[i / 4], out + i);
}
void sha224_final(struct sha224_ctx *ctx, u8 out[SHA224_DIGEST_SIZE])
{
__sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL(sha224_final);
void sha256_final(struct sha256_ctx *ctx, u8 out[SHA256_DIGEST_SIZE])
{
__sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE);
memzero_explicit(ctx, sizeof(*ctx));
}
EXPORT_SYMBOL(sha256_final);
void sha224(const u8 *data, size_t len, u8 out[SHA224_DIGEST_SIZE])
{
struct sha224_ctx ctx;
sha224_init(&ctx);
sha224_update(&ctx, data, len);
sha224_final(&ctx, out);
}
EXPORT_SYMBOL(sha224);
void sha256(const u8 *data, size_t len, u8 out[SHA256_DIGEST_SIZE])
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, data, len);
sha256_final(&ctx, out);
}
EXPORT_SYMBOL(sha256);
/*
* Pre-boot environment (as indicated by __DISABLE_EXPORTS being defined)
* doesn't need either HMAC support or interleaved hashing support
*/
#ifndef __DISABLE_EXPORTS
#ifndef sha256_finup_2x_arch
static bool sha256_finup_2x_arch(const struct __sha256_ctx *ctx,
const u8 *data1, const u8 *data2, size_t len,
u8 out1[SHA256_DIGEST_SIZE],
u8 out2[SHA256_DIGEST_SIZE])
{
return false;
}
static bool sha256_finup_2x_is_optimized_arch(void)
{
return false;
}
#endif
/* Sequential fallback implementation of sha256_finup_2x() */
static noinline_for_stack void sha256_finup_2x_sequential(
const struct __sha256_ctx *ctx, const u8 *data1, const u8 *data2,
size_t len, u8 out1[SHA256_DIGEST_SIZE], u8 out2[SHA256_DIGEST_SIZE])
{
struct __sha256_ctx mut_ctx;
mut_ctx = *ctx;
__sha256_update(&mut_ctx, data1, len);
__sha256_final(&mut_ctx, out1, SHA256_DIGEST_SIZE);
mut_ctx = *ctx;
__sha256_update(&mut_ctx, data2, len);
__sha256_final(&mut_ctx, out2, SHA256_DIGEST_SIZE);
}
void sha256_finup_2x(const struct sha256_ctx *ctx, const u8 *data1,
const u8 *data2, size_t len, u8 out1[SHA256_DIGEST_SIZE],
u8 out2[SHA256_DIGEST_SIZE])
{
if (ctx == NULL)
ctx = &initial_sha256_ctx;
if (likely(sha256_finup_2x_arch(&ctx->ctx, data1, data2, len, out1,
out2)))
return;
sha256_finup_2x_sequential(&ctx->ctx, data1, data2, len, out1, out2);
}
EXPORT_SYMBOL_GPL(sha256_finup_2x);
bool sha256_finup_2x_is_optimized(void)
{
return sha256_finup_2x_is_optimized_arch();
}
EXPORT_SYMBOL_GPL(sha256_finup_2x_is_optimized);
static void __hmac_sha256_preparekey(struct sha256_block_state *istate,
struct sha256_block_state *ostate,
const u8 *raw_key, size_t raw_key_len,
const struct sha256_block_state *iv)
{
union {
u8 b[SHA256_BLOCK_SIZE];
unsigned long w[SHA256_BLOCK_SIZE / sizeof(unsigned long)];
} derived_key = { 0 };
if (unlikely(raw_key_len > SHA256_BLOCK_SIZE)) {
if (iv == &sha224_iv)
sha224(raw_key, raw_key_len, derived_key.b);
else
sha256(raw_key, raw_key_len, derived_key.b);
} else {
memcpy(derived_key.b, raw_key, raw_key_len);
}
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
*istate = *iv;
sha256_blocks(istate, derived_key.b, 1);
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
HMAC_IPAD_VALUE);
*ostate = *iv;
sha256_blocks(ostate, derived_key.b, 1);
memzero_explicit(&derived_key, sizeof(derived_key));
}
void hmac_sha224_preparekey(struct hmac_sha224_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha256_preparekey(&key->key.istate, &key->key.ostate,
raw_key, raw_key_len, &sha224_iv);
}
EXPORT_SYMBOL_GPL(hmac_sha224_preparekey);
void hmac_sha256_preparekey(struct hmac_sha256_key *key,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha256_preparekey(&key->key.istate, &key->key.ostate,
raw_key, raw_key_len, &sha256_iv);
}
EXPORT_SYMBOL_GPL(hmac_sha256_preparekey);
void __hmac_sha256_init(struct __hmac_sha256_ctx *ctx,
const struct __hmac_sha256_key *key)
{
__sha256_init(&ctx->sha_ctx, &key->istate, SHA256_BLOCK_SIZE);
ctx->ostate = key->ostate;
}
EXPORT_SYMBOL_GPL(__hmac_sha256_init);
void hmac_sha224_init_usingrawkey(struct hmac_sha224_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate,
raw_key, raw_key_len, &sha224_iv);
ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE;
}
EXPORT_SYMBOL_GPL(hmac_sha224_init_usingrawkey);
void hmac_sha256_init_usingrawkey(struct hmac_sha256_ctx *ctx,
const u8 *raw_key, size_t raw_key_len)
{
__hmac_sha256_preparekey(&ctx->ctx.sha_ctx.state, &ctx->ctx.ostate,
raw_key, raw_key_len, &sha256_iv);
ctx->ctx.sha_ctx.bytecount = SHA256_BLOCK_SIZE;
}
EXPORT_SYMBOL_GPL(hmac_sha256_init_usingrawkey);
static void __hmac_sha256_final(struct __hmac_sha256_ctx *ctx,
u8 *out, size_t digest_size)
{
/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
__sha256_final(&ctx->sha_ctx, ctx->sha_ctx.buf, digest_size);
memset(&ctx->sha_ctx.buf[digest_size], 0,
SHA256_BLOCK_SIZE - digest_size);
ctx->sha_ctx.buf[digest_size] = 0x80;
*(__be32 *)&ctx->sha_ctx.buf[SHA256_BLOCK_SIZE - 4] =
cpu_to_be32(8 * (SHA256_BLOCK_SIZE + digest_size));
/* Compute the outer hash, which gives the HMAC value. */
sha256_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
for (size_t i = 0; i < digest_size; i += 4)
put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
memzero_explicit(ctx, sizeof(*ctx));
}
void hmac_sha224_final(struct hmac_sha224_ctx *ctx,
u8 out[SHA224_DIGEST_SIZE])
{
__hmac_sha256_final(&ctx->ctx, out, SHA224_DIGEST_SIZE);
}
EXPORT_SYMBOL_GPL(hmac_sha224_final);
void hmac_sha256_final(struct hmac_sha256_ctx *ctx,
u8 out[SHA256_DIGEST_SIZE])
{
__hmac_sha256_final(&ctx->ctx, out, SHA256_DIGEST_SIZE);
}
EXPORT_SYMBOL_GPL(hmac_sha256_final);
void hmac_sha224(const struct hmac_sha224_key *key,
const u8 *data, size_t data_len, u8 out[SHA224_DIGEST_SIZE])
{
struct hmac_sha224_ctx ctx;
hmac_sha224_init(&ctx, key);
hmac_sha224_update(&ctx, data, data_len);
hmac_sha224_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha224);
void hmac_sha256(const struct hmac_sha256_key *key,
const u8 *data, size_t data_len, u8 out[SHA256_DIGEST_SIZE])
{
struct hmac_sha256_ctx ctx;
hmac_sha256_init(&ctx, key);
hmac_sha256_update(&ctx, data, data_len);
hmac_sha256_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha256);
void hmac_sha224_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA224_DIGEST_SIZE])
{
struct hmac_sha224_ctx ctx;
hmac_sha224_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha224_update(&ctx, data, data_len);
hmac_sha224_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha224_usingrawkey);
void hmac_sha256_usingrawkey(const u8 *raw_key, size_t raw_key_len,
const u8 *data, size_t data_len,
u8 out[SHA256_DIGEST_SIZE])
{
struct hmac_sha256_ctx ctx;
hmac_sha256_init_usingrawkey(&ctx, raw_key, raw_key_len);
hmac_sha256_update(&ctx, data, data_len);
hmac_sha256_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(hmac_sha256_usingrawkey);
#endif /* !__DISABLE_EXPORTS */
#ifdef sha256_mod_init_arch
static int __init sha256_mod_init(void)
{
sha256_mod_init_arch();
return 0;
}
subsys_initcall(sha256_mod_init);
static void __exit sha256_mod_exit(void)
{
}
module_exit(sha256_mod_exit);
#endif
MODULE_DESCRIPTION("SHA-224, SHA-256, HMAC-SHA224, and HMAC-SHA256 library functions");
MODULE_LICENSE("GPL");
|