1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 - Columbia University and Linaro Ltd.
* Author: Jintack Lim <jintack.lim@linaro.org>
*/
#include <linux/bitfield.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <asm/fixmap.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_nested.h>
#include <asm/sysreg.h>
#include "sys_regs.h"
struct vncr_tlb {
/* The guest's VNCR_EL2 */
u64 gva;
struct s1_walk_info wi;
struct s1_walk_result wr;
u64 hpa;
/* -1 when not mapped on a CPU */
int cpu;
/*
* true if the TLB is valid. Can only be changed with the
* mmu_lock held.
*/
bool valid;
};
/*
* Ratio of live shadow S2 MMU per vcpu. This is a trade-off between
* memory usage and potential number of different sets of S2 PTs in
* the guests. Running out of S2 MMUs only affects performance (we
* will invalidate them more often).
*/
#define S2_MMU_PER_VCPU 2
void kvm_init_nested(struct kvm *kvm)
{
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
atomic_set(&kvm->arch.vncr_map_count, 0);
}
static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
{
/*
* We only initialise the IPA range on the canonical MMU, which
* defines the contract between KVM and userspace on where the
* "hardware" is in the IPA space. This affects the validity of MMIO
* exits forwarded to userspace, for example.
*
* For nested S2s, we use the PARange as exposed to the guest, as it
* is allowed to use it at will to expose whatever memory map it
* wants to its own guests as it would be on real HW.
*/
return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm));
}
int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *tmp;
int num_mmus, ret = 0;
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) &&
!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
return -EINVAL;
if (!vcpu->arch.ctxt.vncr_array)
vcpu->arch.ctxt.vncr_array = (u64 *)__get_free_page(GFP_KERNEL_ACCOUNT |
__GFP_ZERO);
if (!vcpu->arch.ctxt.vncr_array)
return -ENOMEM;
/*
* Let's treat memory allocation failures as benign: If we fail to
* allocate anything, return an error and keep the allocated array
* alive. Userspace may try to recover by intializing the vcpu
* again, and there is no reason to affect the whole VM for this.
*/
num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU;
tmp = kvrealloc(kvm->arch.nested_mmus,
size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus),
GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!tmp)
return -ENOMEM;
swap(kvm->arch.nested_mmus, tmp);
/*
* If we went through a realocation, adjust the MMU back-pointers in
* the previously initialised kvm_pgtable structures.
*/
if (kvm->arch.nested_mmus != tmp)
for (int i = 0; i < kvm->arch.nested_mmus_size; i++)
kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i];
for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++)
ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]);
if (ret) {
for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++)
kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]);
free_page((unsigned long)vcpu->arch.ctxt.vncr_array);
vcpu->arch.ctxt.vncr_array = NULL;
return ret;
}
kvm->arch.nested_mmus_size = num_mmus;
return 0;
}
struct s2_walk_info {
int (*read_desc)(phys_addr_t pa, u64 *desc, void *data);
void *data;
u64 baddr;
unsigned int max_oa_bits;
unsigned int pgshift;
unsigned int sl;
unsigned int t0sz;
bool be;
};
static u32 compute_fsc(int level, u32 fsc)
{
return fsc | (level & 0x3);
}
static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc)
{
u32 esr;
esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC;
esr |= compute_fsc(level, fsc);
return esr;
}
static int get_ia_size(struct s2_walk_info *wi)
{
return 64 - wi->t0sz;
}
static int check_base_s2_limits(struct s2_walk_info *wi,
int level, int input_size, int stride)
{
int start_size, ia_size;
ia_size = get_ia_size(wi);
/* Check translation limits */
switch (BIT(wi->pgshift)) {
case SZ_64K:
if (level == 0 || (level == 1 && ia_size <= 42))
return -EFAULT;
break;
case SZ_16K:
if (level == 0 || (level == 1 && ia_size <= 40))
return -EFAULT;
break;
case SZ_4K:
if (level < 0 || (level == 0 && ia_size <= 42))
return -EFAULT;
break;
}
/* Check input size limits */
if (input_size > ia_size)
return -EFAULT;
/* Check number of entries in starting level table */
start_size = input_size - ((3 - level) * stride + wi->pgshift);
if (start_size < 1 || start_size > stride + 4)
return -EFAULT;
return 0;
}
/* Check if output is within boundaries */
static int check_output_size(struct s2_walk_info *wi, phys_addr_t output)
{
unsigned int output_size = wi->max_oa_bits;
if (output_size != 48 && (output & GENMASK_ULL(47, output_size)))
return -1;
return 0;
}
/*
* This is essentially a C-version of the pseudo code from the ARM ARM
* AArch64.TranslationTableWalk function. I strongly recommend looking at
* that pseudocode in trying to understand this.
*
* Must be called with the kvm->srcu read lock held
*/
static int walk_nested_s2_pgd(phys_addr_t ipa,
struct s2_walk_info *wi, struct kvm_s2_trans *out)
{
int first_block_level, level, stride, input_size, base_lower_bound;
phys_addr_t base_addr;
unsigned int addr_top, addr_bottom;
u64 desc; /* page table entry */
int ret;
phys_addr_t paddr;
switch (BIT(wi->pgshift)) {
default:
case SZ_64K:
case SZ_16K:
level = 3 - wi->sl;
first_block_level = 2;
break;
case SZ_4K:
level = 2 - wi->sl;
first_block_level = 1;
break;
}
stride = wi->pgshift - 3;
input_size = get_ia_size(wi);
if (input_size > 48 || input_size < 25)
return -EFAULT;
ret = check_base_s2_limits(wi, level, input_size, stride);
if (WARN_ON(ret))
return ret;
base_lower_bound = 3 + input_size - ((3 - level) * stride +
wi->pgshift);
base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound);
if (check_output_size(wi, base_addr)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
return 1;
}
addr_top = input_size - 1;
while (1) {
phys_addr_t index;
addr_bottom = (3 - level) * stride + wi->pgshift;
index = (ipa & GENMASK_ULL(addr_top, addr_bottom))
>> (addr_bottom - 3);
paddr = base_addr | index;
ret = wi->read_desc(paddr, &desc, wi->data);
if (ret < 0)
return ret;
/*
* Handle reversedescriptors if endianness differs between the
* host and the guest hypervisor.
*/
if (wi->be)
desc = be64_to_cpu((__force __be64)desc);
else
desc = le64_to_cpu((__force __le64)desc);
/* Check for valid descriptor at this point */
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
/* We're at the final level or block translation level */
if ((desc & 3) == 1 || level == 3)
break;
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
base_addr = desc & GENMASK_ULL(47, wi->pgshift);
level += 1;
addr_top = addr_bottom - 1;
}
if (level < first_block_level) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->desc = desc;
return 1;
}
if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->desc = desc;
return 1;
}
if (!(desc & BIT(10))) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
out->desc = desc;
return 1;
}
addr_bottom += contiguous_bit_shift(desc, wi, level);
/* Calculate and return the result */
paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
(ipa & GENMASK_ULL(addr_bottom - 1, 0));
out->output = paddr;
out->block_size = 1UL << ((3 - level) * stride + wi->pgshift);
out->readable = desc & (0b01 << 6);
out->writable = desc & (0b10 << 6);
out->level = level;
out->desc = desc;
return 0;
}
static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data)
{
struct kvm_vcpu *vcpu = data;
return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc));
}
static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi)
{
wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK;
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
wi->pgshift = 12; break;
case VTCR_EL2_TG0_16K:
wi->pgshift = 14; break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
/* Global limit for now, should eventually be per-VM */
wi->max_oa_bits = min(get_kvm_ipa_limit(),
ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr), false));
}
int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
struct kvm_s2_trans *result)
{
u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
struct s2_walk_info wi;
int ret;
result->esr = 0;
if (!vcpu_has_nv(vcpu))
return 0;
wi.read_desc = read_guest_s2_desc;
wi.data = vcpu;
wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr_to_walk_info(vtcr, &wi);
wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE;
ret = walk_nested_s2_pgd(gipa, &wi, result);
if (ret)
result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC);
return ret;
}
static unsigned int ttl_to_size(u8 ttl)
{
int level = ttl & 3;
int gran = (ttl >> 2) & 3;
unsigned int max_size = 0;
switch (gran) {
case TLBI_TTL_TG_4K:
switch (level) {
case 0:
break;
case 1:
max_size = SZ_1G;
break;
case 2:
max_size = SZ_2M;
break;
case 3:
max_size = SZ_4K;
break;
}
break;
case TLBI_TTL_TG_16K:
switch (level) {
case 0:
case 1:
break;
case 2:
max_size = SZ_32M;
break;
case 3:
max_size = SZ_16K;
break;
}
break;
case TLBI_TTL_TG_64K:
switch (level) {
case 0:
case 1:
/* No 52bit IPA support */
break;
case 2:
max_size = SZ_512M;
break;
case 3:
max_size = SZ_64K;
break;
}
break;
default: /* No size information */
break;
}
return max_size;
}
static u8 pgshift_level_to_ttl(u16 shift, u8 level)
{
u8 ttl;
switch(shift) {
case 12:
ttl = TLBI_TTL_TG_4K;
break;
case 14:
ttl = TLBI_TTL_TG_16K;
break;
case 16:
ttl = TLBI_TTL_TG_64K;
break;
default:
BUG();
}
ttl <<= 2;
ttl |= level & 3;
return ttl;
}
/*
* Compute the equivalent of the TTL field by parsing the shadow PT. The
* granule size is extracted from the cached VTCR_EL2.TG0 while the level is
* retrieved from first entry carrying the level as a tag.
*/
static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr)
{
u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr;
kvm_pte_t pte;
u8 ttl, level;
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock);
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
ttl = (TLBI_TTL_TG_4K << 2);
break;
case VTCR_EL2_TG0_16K:
ttl = (TLBI_TTL_TG_16K << 2);
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
ttl = (TLBI_TTL_TG_64K << 2);
break;
}
tmp = addr;
again:
/* Iteratively compute the block sizes for a particular granule size */
switch (vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
if (sz < SZ_4K) sz = SZ_4K;
else if (sz < SZ_2M) sz = SZ_2M;
else if (sz < SZ_1G) sz = SZ_1G;
else sz = 0;
break;
case VTCR_EL2_TG0_16K:
if (sz < SZ_16K) sz = SZ_16K;
else if (sz < SZ_32M) sz = SZ_32M;
else sz = 0;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
if (sz < SZ_64K) sz = SZ_64K;
else if (sz < SZ_512M) sz = SZ_512M;
else sz = 0;
break;
}
if (sz == 0)
return 0;
tmp &= ~(sz - 1);
if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL))
goto again;
if (!(pte & PTE_VALID))
goto again;
level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte);
if (!level)
goto again;
ttl |= level;
/*
* We now have found some level information in the shadow S2. Check
* that the resulting range is actually including the original IPA.
*/
sz = ttl_to_size(ttl);
if (addr < (tmp + sz))
return ttl;
return 0;
}
unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
unsigned long max_size;
u8 ttl;
ttl = FIELD_GET(TLBI_TTL_MASK, val);
if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) {
/* No TTL, check the shadow S2 for a hint */
u64 addr = (val & GENMASK_ULL(35, 0)) << 12;
ttl = get_guest_mapping_ttl(mmu, addr);
}
max_size = ttl_to_size(ttl);
if (!max_size) {
/* Compute the maximum extent of the invalidation */
switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) {
case VTCR_EL2_TG0_4K:
max_size = SZ_1G;
break;
case VTCR_EL2_TG0_16K:
max_size = SZ_32M;
break;
case VTCR_EL2_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
/*
* No, we do not support 52bit IPA in nested yet. Once
* we do, this should be 4TB.
*/
max_size = SZ_512M;
break;
}
}
WARN_ON(!max_size);
return max_size;
}
/*
* We can have multiple *different* MMU contexts with the same VMID:
*
* - S2 being enabled or not, hence differing by the HCR_EL2.VM bit
*
* - Multiple vcpus using private S2s (huh huh...), hence differing by the
* VBBTR_EL2.BADDR address
*
* - A combination of the above...
*
* We can always identify which MMU context to pick at run-time. However,
* TLB invalidation involving a VMID must take action on all the TLBs using
* this particular VMID. This translates into applying the same invalidation
* operation to all the contexts that are using this VMID. Moar phun!
*/
void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid,
const union tlbi_info *info,
void (*tlbi_callback)(struct kvm_s2_mmu *,
const union tlbi_info *))
{
write_lock(&kvm->mmu_lock);
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (vmid == get_vmid(mmu->tlb_vttbr))
tlbi_callback(mmu, info);
}
write_unlock(&kvm->mmu_lock);
}
struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
bool nested_stage2_enabled;
u64 vttbr, vtcr, hcr;
lockdep_assert_held_write(&kvm->mmu_lock);
vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
hcr = vcpu_read_sys_reg(vcpu, HCR_EL2);
nested_stage2_enabled = hcr & HCR_VM;
/* Don't consider the CnP bit for the vttbr match */
vttbr &= ~VTTBR_CNP_BIT;
/*
* Two possibilities when looking up a S2 MMU context:
*
* - either S2 is enabled in the guest, and we need a context that is
* S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR,
* which makes it safe from a TLB conflict perspective (a broken
* guest won't be able to generate them),
*
* - or S2 is disabled, and we need a context that is S2-disabled
* and matches the VMID only, as all TLBs are tagged by VMID even
* if S2 translation is disabled.
*/
for (int i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!kvm_s2_mmu_valid(mmu))
continue;
if (nested_stage2_enabled &&
mmu->nested_stage2_enabled &&
vttbr == mmu->tlb_vttbr &&
vtcr == mmu->tlb_vtcr)
return mmu;
if (!nested_stage2_enabled &&
!mmu->nested_stage2_enabled &&
get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr))
return mmu;
}
return NULL;
}
static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_s2_mmu *s2_mmu;
int i;
lockdep_assert_held_write(&vcpu->kvm->mmu_lock);
s2_mmu = lookup_s2_mmu(vcpu);
if (s2_mmu)
goto out;
/*
* Make sure we don't always search from the same point, or we
* will always reuse a potentially active context, leaving
* free contexts unused.
*/
for (i = kvm->arch.nested_mmus_next;
i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next);
i++) {
s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size];
if (atomic_read(&s2_mmu->refcnt) == 0)
break;
}
BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */
/* Set the scene for the next search */
kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size;
/* Make sure we don't forget to do the laundry */
if (kvm_s2_mmu_valid(s2_mmu))
s2_mmu->pending_unmap = true;
/*
* The virtual VMID (modulo CnP) will be used as a key when matching
* an existing kvm_s2_mmu.
*
* We cache VTCR at allocation time, once and for all. It'd be great
* if the guest didn't screw that one up, as this is not very
* forgiving...
*/
s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT;
s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2);
s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM;
out:
atomic_inc(&s2_mmu->refcnt);
/*
* Set the vCPU request to perform an unmap, even if the pending unmap
* originates from another vCPU. This guarantees that the MMU has been
* completely unmapped before any vCPU actually uses it, and allows
* multiple vCPUs to lend a hand with completing the unmap.
*/
if (s2_mmu->pending_unmap)
kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu);
return s2_mmu;
}
void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu)
{
/* CnP being set denotes an invalid entry */
mmu->tlb_vttbr = VTTBR_CNP_BIT;
mmu->nested_stage2_enabled = false;
atomic_set(&mmu->refcnt, 0);
}
void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu)
{
/*
* If the vCPU kept its reference on the MMU after the last put,
* keep rolling with it.
*/
if (is_hyp_ctxt(vcpu)) {
if (!vcpu->arch.hw_mmu)
vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
} else {
if (!vcpu->arch.hw_mmu) {
scoped_guard(write_lock, &vcpu->kvm->mmu_lock)
vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu);
}
if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_NV)
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
}
}
void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu)
{
/* Unconditionally drop the VNCR mapping if we have one */
if (host_data_test_flag(L1_VNCR_MAPPED)) {
BUG_ON(vcpu->arch.vncr_tlb->cpu != smp_processor_id());
BUG_ON(is_hyp_ctxt(vcpu));
clear_fixmap(vncr_fixmap(vcpu->arch.vncr_tlb->cpu));
vcpu->arch.vncr_tlb->cpu = -1;
host_data_clear_flag(L1_VNCR_MAPPED);
atomic_dec(&vcpu->kvm->arch.vncr_map_count);
}
/*
* Keep a reference on the associated stage-2 MMU if the vCPU is
* scheduling out and not in WFI emulation, suggesting it is likely to
* reuse the MMU sometime soon.
*/
if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI))
return;
if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu))
atomic_dec(&vcpu->arch.hw_mmu->refcnt);
vcpu->arch.hw_mmu = NULL;
}
/*
* Returns non-zero if permission fault is handled by injecting it to the next
* level hypervisor.
*/
int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans)
{
bool forward_fault = false;
trans->esr = 0;
if (!kvm_vcpu_trap_is_permission_fault(vcpu))
return 0;
if (kvm_vcpu_trap_is_iabt(vcpu)) {
forward_fault = !kvm_s2_trans_executable(trans);
} else {
bool write_fault = kvm_is_write_fault(vcpu);
forward_fault = ((write_fault && !trans->writable) ||
(!write_fault && !trans->readable));
}
if (forward_fault)
trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM);
return forward_fault;
}
int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2)
{
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2);
vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2);
return kvm_inject_nested_sync(vcpu, esr_el2);
}
static void invalidate_vncr(struct vncr_tlb *vt)
{
vt->valid = false;
if (vt->cpu != -1)
clear_fixmap(vncr_fixmap(vt->cpu));
}
static void kvm_invalidate_vncr_ipa(struct kvm *kvm, u64 start, u64 end)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return;
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 ipa_start, ipa_end, ipa_size;
/*
* Careful here: We end-up here from an MMU notifier,
* and this can race against a vcpu not being onlined
* yet, without the pseudo-TLB being allocated.
*
* Skip those, as they obviously don't participate in
* the invalidation at this stage.
*/
if (!vt)
continue;
if (!vt->valid)
continue;
ipa_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
ipa_start = vt->wr.pa & ~(ipa_size - 1);
ipa_end = ipa_start + ipa_size;
if (ipa_end <= start || ipa_start >= end)
continue;
invalidate_vncr(vt);
}
}
struct s1e2_tlbi_scope {
enum {
TLBI_ALL,
TLBI_VA,
TLBI_VAA,
TLBI_ASID,
} type;
u16 asid;
u64 va;
u64 size;
};
static void invalidate_vncr_va(struct kvm *kvm,
struct s1e2_tlbi_scope *scope)
{
struct kvm_vcpu *vcpu;
unsigned long i;
lockdep_assert_held_write(&kvm->mmu_lock);
kvm_for_each_vcpu(i, vcpu, kvm) {
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 va_start, va_end, va_size;
if (!vt->valid)
continue;
va_size = ttl_to_size(pgshift_level_to_ttl(vt->wi.pgshift,
vt->wr.level));
va_start = vt->gva & ~(va_size - 1);
va_end = va_start + va_size;
switch (scope->type) {
case TLBI_ALL:
break;
case TLBI_VA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
if (vt->wr.nG && vt->wr.asid != scope->asid)
continue;
break;
case TLBI_VAA:
if (va_end <= scope->va ||
va_start >= (scope->va + scope->size))
continue;
break;
case TLBI_ASID:
if (!vt->wr.nG || vt->wr.asid != scope->asid)
continue;
break;
}
invalidate_vncr(vt);
}
}
#define tlbi_va_s1_to_va(v) (u64)sign_extend64((v) << 12, 48)
static void compute_s1_tlbi_range(struct kvm_vcpu *vcpu, u32 inst, u64 val,
struct s1e2_tlbi_scope *scope)
{
switch (inst) {
case OP_TLBI_ALLE2:
case OP_TLBI_ALLE2IS:
case OP_TLBI_ALLE2OS:
case OP_TLBI_VMALLE1:
case OP_TLBI_VMALLE1IS:
case OP_TLBI_VMALLE1OS:
case OP_TLBI_ALLE2NXS:
case OP_TLBI_ALLE2ISNXS:
case OP_TLBI_ALLE2OSNXS:
case OP_TLBI_VMALLE1NXS:
case OP_TLBI_VMALLE1ISNXS:
case OP_TLBI_VMALLE1OSNXS:
scope->type = TLBI_ALL;
break;
case OP_TLBI_VAE2:
case OP_TLBI_VAE2IS:
case OP_TLBI_VAE2OS:
case OP_TLBI_VAE1:
case OP_TLBI_VAE1IS:
case OP_TLBI_VAE1OS:
case OP_TLBI_VAE2NXS:
case OP_TLBI_VAE2ISNXS:
case OP_TLBI_VAE2OSNXS:
case OP_TLBI_VAE1NXS:
case OP_TLBI_VAE1ISNXS:
case OP_TLBI_VAE1OSNXS:
case OP_TLBI_VALE2:
case OP_TLBI_VALE2IS:
case OP_TLBI_VALE2OS:
case OP_TLBI_VALE1:
case OP_TLBI_VALE1IS:
case OP_TLBI_VALE1OS:
case OP_TLBI_VALE2NXS:
case OP_TLBI_VALE2ISNXS:
case OP_TLBI_VALE2OSNXS:
case OP_TLBI_VALE1NXS:
case OP_TLBI_VALE1ISNXS:
case OP_TLBI_VALE1OSNXS:
scope->type = TLBI_VA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_ASIDE1:
case OP_TLBI_ASIDE1IS:
case OP_TLBI_ASIDE1OS:
case OP_TLBI_ASIDE1NXS:
case OP_TLBI_ASIDE1ISNXS:
case OP_TLBI_ASIDE1OSNXS:
scope->type = TLBI_ASID;
scope->asid = FIELD_GET(TLBIR_ASID_MASK, val);
break;
case OP_TLBI_VAAE1:
case OP_TLBI_VAAE1IS:
case OP_TLBI_VAAE1OS:
case OP_TLBI_VAAE1NXS:
case OP_TLBI_VAAE1ISNXS:
case OP_TLBI_VAAE1OSNXS:
case OP_TLBI_VAALE1:
case OP_TLBI_VAALE1IS:
case OP_TLBI_VAALE1OS:
case OP_TLBI_VAALE1NXS:
case OP_TLBI_VAALE1ISNXS:
case OP_TLBI_VAALE1OSNXS:
scope->type = TLBI_VAA;
scope->size = ttl_to_size(FIELD_GET(TLBI_TTL_MASK, val));
if (!scope->size)
scope->size = SZ_1G;
scope->va = tlbi_va_s1_to_va(val) & ~(scope->size - 1);
break;
case OP_TLBI_RVAE2:
case OP_TLBI_RVAE2IS:
case OP_TLBI_RVAE2OS:
case OP_TLBI_RVAE1:
case OP_TLBI_RVAE1IS:
case OP_TLBI_RVAE1OS:
case OP_TLBI_RVAE2NXS:
case OP_TLBI_RVAE2ISNXS:
case OP_TLBI_RVAE2OSNXS:
case OP_TLBI_RVAE1NXS:
case OP_TLBI_RVAE1ISNXS:
case OP_TLBI_RVAE1OSNXS:
case OP_TLBI_RVALE2:
case OP_TLBI_RVALE2IS:
case OP_TLBI_RVALE2OS:
case OP_TLBI_RVALE1:
case OP_TLBI_RVALE1IS:
case OP_TLBI_RVALE1OS:
case OP_TLBI_RVALE2NXS:
case OP_TLBI_RVALE2ISNXS:
case OP_TLBI_RVALE2OSNXS:
case OP_TLBI_RVALE1NXS:
case OP_TLBI_RVALE1ISNXS:
case OP_TLBI_RVALE1OSNXS:
scope->type = TLBI_VA;
scope->va = decode_range_tlbi(val, &scope->size, &scope->asid);
break;
case OP_TLBI_RVAAE1:
case OP_TLBI_RVAAE1IS:
case OP_TLBI_RVAAE1OS:
case OP_TLBI_RVAAE1NXS:
case OP_TLBI_RVAAE1ISNXS:
case OP_TLBI_RVAAE1OSNXS:
case OP_TLBI_RVAALE1:
case OP_TLBI_RVAALE1IS:
case OP_TLBI_RVAALE1OS:
case OP_TLBI_RVAALE1NXS:
case OP_TLBI_RVAALE1ISNXS:
case OP_TLBI_RVAALE1OSNXS:
scope->type = TLBI_VAA;
scope->va = decode_range_tlbi(val, &scope->size, NULL);
break;
}
}
void kvm_handle_s1e2_tlbi(struct kvm_vcpu *vcpu, u32 inst, u64 val)
{
struct s1e2_tlbi_scope scope = {};
compute_s1_tlbi_range(vcpu, inst, val, &scope);
guard(write_lock)(&vcpu->kvm->mmu_lock);
invalidate_vncr_va(vcpu->kvm, &scope);
}
void kvm_nested_s2_wp(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu));
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block);
}
kvm_invalidate_vncr_ipa(kvm, 0, BIT(kvm->arch.mmu.pgt->ia_bits));
}
void kvm_nested_s2_flush(struct kvm *kvm)
{
int i;
lockdep_assert_held_write(&kvm->mmu_lock);
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (kvm_s2_mmu_valid(mmu))
kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu));
}
}
void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->arch.nested_mmus_size; i++) {
struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i];
if (!WARN_ON(atomic_read(&mmu->refcnt)))
kvm_free_stage2_pgd(mmu);
}
kvfree(kvm->arch.nested_mmus);
kvm->arch.nested_mmus = NULL;
kvm->arch.nested_mmus_size = 0;
kvm_uninit_stage2_mmu(kvm);
}
/*
* Dealing with VNCR_EL2 exposed by the *guest* is a complicated matter:
*
* - We introduce an internal representation of a vcpu-private TLB,
* representing the mapping between the guest VA contained in VNCR_EL2,
* the IPA the guest's EL2 PTs point to, and the actual PA this lives at.
*
* - On translation fault from a nested VNCR access, we create such a TLB.
* If there is no mapping to describe, the guest inherits the fault.
* Crucially, no actual mapping is done at this stage.
*
* - On vcpu_load() in a non-HYP context with HCR_EL2.NV==1, if the above
* TLB exists, we map it in the fixmap for this CPU, and run with it. We
* have to respect the permissions dictated by the guest, but not the
* memory type (FWB is a must).
*
* - Note that we usually don't do a vcpu_load() on the back of a fault
* (unless we are preempted), so the resolution of a translation fault
* must go via a request that will map the VNCR page in the fixmap.
* vcpu_load() might as well use the same mechanism.
*
* - On vcpu_put() in a non-HYP context with HCR_EL2.NV==1, if the TLB was
* mapped, we unmap it. Yes it is that simple. The TLB still exists
* though, and may be reused at a later load.
*
* - On permission fault, we simply forward the fault to the guest's EL2.
* Get out of my way.
*
* - On any TLBI for the EL2&0 translation regime, we must find any TLB that
* intersects with the TLBI request, invalidate it, and unmap the page
* from the fixmap. Because we need to look at all the vcpu-private TLBs,
* this requires some wide-ranging locking to ensure that nothing races
* against it. This may require some refcounting to avoid the search when
* no such TLB is present.
*
* - On MMU notifiers, we must invalidate our TLB in a similar way, but
* looking at the IPA instead. The funny part is that there may not be a
* stage-2 mapping for this page if L1 hasn't accessed it using LD/ST
* instructions.
*/
int kvm_vcpu_allocate_vncr_tlb(struct kvm_vcpu *vcpu)
{
if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY))
return 0;
vcpu->arch.vncr_tlb = kzalloc(sizeof(*vcpu->arch.vncr_tlb),
GFP_KERNEL_ACCOUNT);
if (!vcpu->arch.vncr_tlb)
return -ENOMEM;
return 0;
}
static u64 read_vncr_el2(struct kvm_vcpu *vcpu)
{
return (u64)sign_extend64(__vcpu_sys_reg(vcpu, VNCR_EL2), 48);
}
static int kvm_translate_vncr(struct kvm_vcpu *vcpu, bool *is_gmem)
{
struct kvm_memory_slot *memslot;
bool write_fault, writable;
unsigned long mmu_seq;
struct vncr_tlb *vt;
struct page *page;
u64 va, pfn, gfn;
int ret;
vt = vcpu->arch.vncr_tlb;
/*
* If we're about to walk the EL2 S1 PTs, we must invalidate the
* current TLB, as it could be sampled from another vcpu doing a
* TLBI *IS. A real CPU wouldn't do that, but we only keep a single
* translation, so not much of a choice.
*
* We also prepare the next walk wilst we're at it.
*/
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
invalidate_vncr(vt);
vt->wi = (struct s1_walk_info) {
.regime = TR_EL20,
.as_el0 = false,
.pan = false,
};
vt->wr = (struct s1_walk_result){};
}
guard(srcu)(&vcpu->kvm->srcu);
va = read_vncr_el2(vcpu);
ret = __kvm_translate_va(vcpu, &vt->wi, &vt->wr, va);
if (ret)
return ret;
write_fault = kvm_is_write_fault(vcpu);
mmu_seq = vcpu->kvm->mmu_invalidate_seq;
smp_rmb();
gfn = vt->wr.pa >> PAGE_SHIFT;
memslot = gfn_to_memslot(vcpu->kvm, gfn);
if (!memslot)
return -EFAULT;
*is_gmem = kvm_slot_has_gmem(memslot);
if (!*is_gmem) {
pfn = __kvm_faultin_pfn(memslot, gfn, write_fault ? FOLL_WRITE : 0,
&writable, &page);
if (is_error_noslot_pfn(pfn) || (write_fault && !writable))
return -EFAULT;
} else {
ret = kvm_gmem_get_pfn(vcpu->kvm, memslot, gfn, &pfn, &page, NULL);
if (ret) {
kvm_prepare_memory_fault_exit(vcpu, vt->wr.pa, PAGE_SIZE,
write_fault, false, false);
return ret;
}
}
scoped_guard(write_lock, &vcpu->kvm->mmu_lock) {
if (mmu_invalidate_retry(vcpu->kvm, mmu_seq))
return -EAGAIN;
vt->gva = va;
vt->hpa = pfn << PAGE_SHIFT;
vt->valid = true;
vt->cpu = -1;
kvm_make_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu);
kvm_release_faultin_page(vcpu->kvm, page, false, vt->wr.pw);
}
if (vt->wr.pw)
mark_page_dirty(vcpu->kvm, gfn);
return 0;
}
static void inject_vncr_perm(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
/* Adjust the fault level to reflect that of the guest's */
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC,
ESR_ELx_FSC_PERM_L(vt->wr.level));
kvm_inject_nested_sync(vcpu, esr);
}
static bool kvm_vncr_tlb_lookup(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
lockdep_assert_held_read(&vcpu->kvm->mmu_lock);
if (!vt->valid)
return false;
if (read_vncr_el2(vcpu) != vt->gva)
return false;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
return asid == vt->wr.asid;
}
return true;
}
int kvm_handle_vncr_abort(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
u64 esr = kvm_vcpu_get_esr(vcpu);
WARN_ON_ONCE(!(esr & ESR_ELx_VNCR));
if (kvm_vcpu_abt_issea(vcpu))
return kvm_handle_guest_sea(vcpu);
if (esr_fsc_is_permission_fault(esr)) {
inject_vncr_perm(vcpu);
} else if (esr_fsc_is_translation_fault(esr)) {
bool valid, is_gmem = false;
int ret;
scoped_guard(read_lock, &vcpu->kvm->mmu_lock)
valid = kvm_vncr_tlb_lookup(vcpu);
if (!valid)
ret = kvm_translate_vncr(vcpu, &is_gmem);
else
ret = -EPERM;
switch (ret) {
case -EAGAIN:
/* Let's try again... */
break;
case -ENOMEM:
/*
* For guest_memfd, this indicates that it failed to
* create a folio to back the memory. Inform userspace.
*/
if (is_gmem)
return 0;
/* Otherwise, let's try again... */
break;
case -EFAULT:
case -EIO:
case -EHWPOISON:
if (is_gmem)
return 0;
fallthrough;
case -EINVAL:
case -ENOENT:
case -EACCES:
/*
* Translation failed, inject the corresponding
* exception back to EL2.
*/
BUG_ON(!vt->wr.failed);
esr &= ~ESR_ELx_FSC;
esr |= FIELD_PREP(ESR_ELx_FSC, vt->wr.fst);
kvm_inject_nested_sync(vcpu, esr);
break;
case -EPERM:
/* Hack to deal with POE until we get kernel support */
inject_vncr_perm(vcpu);
break;
case 0:
break;
}
} else {
WARN_ONCE(1, "Unhandled VNCR abort, ESR=%llx\n", esr);
}
return 1;
}
static void kvm_map_l1_vncr(struct kvm_vcpu *vcpu)
{
struct vncr_tlb *vt = vcpu->arch.vncr_tlb;
pgprot_t prot;
guard(preempt)();
guard(read_lock)(&vcpu->kvm->mmu_lock);
/*
* The request to map VNCR may have raced against some other
* event, such as an interrupt, and may not be valid anymore.
*/
if (is_hyp_ctxt(vcpu))
return;
/*
* Check that the pseudo-TLB is valid and that VNCR_EL2 still
* contains the expected value. If it doesn't, we simply bail out
* without a mapping -- a transformed MSR/MRS will generate the
* fault and allows us to populate the pseudo-TLB.
*/
if (!vt->valid)
return;
if (read_vncr_el2(vcpu) != vt->gva)
return;
if (vt->wr.nG) {
u64 tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
u64 ttbr = ((tcr & TCR_A1) ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
u16 asid;
asid = FIELD_GET(TTBR_ASID_MASK, ttbr);
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR0_EL1, ASIDBITS, 16) ||
!(tcr & TCR_ASID16))
asid &= GENMASK(7, 0);
if (asid != vt->wr.asid)
return;
}
vt->cpu = smp_processor_id();
if (vt->wr.pw && vt->wr.pr)
prot = PAGE_KERNEL;
else if (vt->wr.pr)
prot = PAGE_KERNEL_RO;
else
prot = PAGE_NONE;
/*
* We can't map write-only (or no permission at all) in the kernel,
* but the guest can do it if using POE, so we'll have to turn a
* translation fault into a permission fault at runtime.
* FIXME: WO doesn't work at all, need POE support in the kernel.
*/
if (pgprot_val(prot) != pgprot_val(PAGE_NONE)) {
__set_fixmap(vncr_fixmap(vt->cpu), vt->hpa, prot);
host_data_set_flag(L1_VNCR_MAPPED);
atomic_inc(&vcpu->kvm->arch.vncr_map_count);
}
}
#define has_tgran_2(__r, __sz) \
({ \
u64 _s1, _s2, _mmfr0 = __r; \
\
_s2 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
TGRAN##__sz##_2, _mmfr0); \
\
_s1 = SYS_FIELD_GET(ID_AA64MMFR0_EL1, \
TGRAN##__sz, _mmfr0); \
\
((_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_NI && \
_s2 != ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz) || \
(_s2 == ID_AA64MMFR0_EL1_TGRAN##__sz##_2_TGRAN##__sz && \
_s1 != ID_AA64MMFR0_EL1_TGRAN##__sz##_NI)); \
})
/*
* Our emulated CPU doesn't support all the possible features. For the
* sake of simplicity (and probably mental sanity), wipe out a number
* of feature bits we don't intend to support for the time being.
* This list should get updated as new features get added to the NV
* support, and new extension to the architecture.
*/
u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val)
{
u64 orig_val = val;
switch (reg) {
case SYS_ID_AA64ISAR0_EL1:
/* Support everything but TME */
val &= ~ID_AA64ISAR0_EL1_TME;
break;
case SYS_ID_AA64ISAR1_EL1:
/* Support everything but LS64 and Spec Invalidation */
val &= ~(ID_AA64ISAR1_EL1_LS64 |
ID_AA64ISAR1_EL1_SPECRES);
break;
case SYS_ID_AA64PFR0_EL1:
/* No RME, AMU, MPAM, or S-EL2 */
val &= ~(ID_AA64PFR0_EL1_RME |
ID_AA64PFR0_EL1_AMU |
ID_AA64PFR0_EL1_MPAM |
ID_AA64PFR0_EL1_SEL2 |
ID_AA64PFR0_EL1_EL3 |
ID_AA64PFR0_EL1_EL2 |
ID_AA64PFR0_EL1_EL1 |
ID_AA64PFR0_EL1_EL0);
/* 64bit only at any EL */
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP);
val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP);
break;
case SYS_ID_AA64PFR1_EL1:
/* Only support BTI, SSBS, CSV2_frac */
val &= ~(ID_AA64PFR1_EL1_PFAR |
ID_AA64PFR1_EL1_MTEX |
ID_AA64PFR1_EL1_THE |
ID_AA64PFR1_EL1_GCS |
ID_AA64PFR1_EL1_MTE_frac |
ID_AA64PFR1_EL1_NMI |
ID_AA64PFR1_EL1_SME |
ID_AA64PFR1_EL1_RES0 |
ID_AA64PFR1_EL1_MPAM_frac |
ID_AA64PFR1_EL1_MTE);
break;
case SYS_ID_AA64MMFR0_EL1:
/* Hide ExS, Secure Memory */
val &= ~(ID_AA64MMFR0_EL1_EXS |
ID_AA64MMFR0_EL1_TGRAN4_2 |
ID_AA64MMFR0_EL1_TGRAN16_2 |
ID_AA64MMFR0_EL1_TGRAN64_2 |
ID_AA64MMFR0_EL1_SNSMEM);
/* Hide CNTPOFF if present */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP);
/* Disallow unsupported S2 page sizes */
switch (PAGE_SIZE) {
case SZ_64K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI);
fallthrough;
case SZ_16K:
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI);
fallthrough;
case SZ_4K:
/* Support everything */
break;
}
/*
* Since we can't support a guest S2 page size smaller
* than the host's own page size (due to KVM only
* populating its own S2 using the kernel's page
* size), advertise the limitation using FEAT_GTG.
*/
switch (PAGE_SIZE) {
case SZ_4K:
if (has_tgran_2(orig_val, 4))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP);
fallthrough;
case SZ_16K:
if (has_tgran_2(orig_val, 16))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP);
fallthrough;
case SZ_64K:
if (has_tgran_2(orig_val, 64))
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP);
break;
}
/* Cap PARange to 48bits */
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48);
break;
case SYS_ID_AA64MMFR1_EL1:
val &= ~(ID_AA64MMFR1_EL1_CMOW |
ID_AA64MMFR1_EL1_nTLBPA |
ID_AA64MMFR1_EL1_ETS |
ID_AA64MMFR1_EL1_XNX |
ID_AA64MMFR1_EL1_HAFDBS);
/* FEAT_E2H0 implies no VHE */
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features))
val &= ~ID_AA64MMFR1_EL1_VH;
break;
case SYS_ID_AA64MMFR2_EL1:
val &= ~(ID_AA64MMFR2_EL1_BBM |
ID_AA64MMFR2_EL1_TTL |
GENMASK_ULL(47, 44) |
ID_AA64MMFR2_EL1_ST |
ID_AA64MMFR2_EL1_CCIDX |
ID_AA64MMFR2_EL1_VARange);
/* Force TTL support */
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP);
break;
case SYS_ID_AA64MMFR4_EL1:
/*
* You get EITHER
*
* - FEAT_VHE without FEAT_E2H0
* - FEAT_NV limited to FEAT_NV2
* - HCR_EL2.NV1 being RES0
*
* OR
*
* - FEAT_E2H0 without FEAT_VHE nor FEAT_NV
*
* Life is too short for anything else.
*/
if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) {
val = 0;
} else {
val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY);
val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1);
}
break;
case SYS_ID_AA64DFR0_EL1:
/* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */
val &= ~(ID_AA64DFR0_EL1_ExtTrcBuff |
ID_AA64DFR0_EL1_BRBE |
ID_AA64DFR0_EL1_MTPMU |
ID_AA64DFR0_EL1_TraceBuffer |
ID_AA64DFR0_EL1_TraceFilt |
ID_AA64DFR0_EL1_PMSVer |
ID_AA64DFR0_EL1_CTX_CMPs |
ID_AA64DFR0_EL1_SEBEP |
ID_AA64DFR0_EL1_PMSS |
ID_AA64DFR0_EL1_TraceVer);
/*
* FEAT_Debugv8p9 requires support for extended breakpoints /
* watchpoints.
*/
val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
break;
}
return val;
}
u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu,
enum vcpu_sysreg sr, u64 v)
{
struct kvm_sysreg_masks *masks;
masks = vcpu->kvm->arch.sysreg_masks;
if (masks) {
sr -= __SANITISED_REG_START__;
v &= ~masks->mask[sr].res0;
v |= masks->mask[sr].res1;
}
return v;
}
static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1)
{
int i = sr - __SANITISED_REG_START__;
BUILD_BUG_ON(!__builtin_constant_p(sr));
BUILD_BUG_ON(sr < __SANITISED_REG_START__);
BUILD_BUG_ON(sr >= NR_SYS_REGS);
kvm->arch.sysreg_masks->mask[i].res0 = res0;
kvm->arch.sysreg_masks->mask[i].res1 = res1;
}
int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
u64 res0, res1;
lockdep_assert_held(&kvm->arch.config_lock);
if (kvm->arch.sysreg_masks)
goto out;
kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)),
GFP_KERNEL_ACCOUNT);
if (!kvm->arch.sysreg_masks)
return -ENOMEM;
/* VTTBR_EL2 */
res0 = res1 = 0;
if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16))
res0 |= GENMASK(63, 56);
if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP))
res0 |= VTTBR_CNP_BIT;
set_sysreg_masks(kvm, VTTBR_EL2, res0, res1);
/* VTCR_EL2 */
res0 = GENMASK(63, 32) | GENMASK(30, 20);
res1 = BIT(31);
set_sysreg_masks(kvm, VTCR_EL2, res0, res1);
/* VMPIDR_EL2 */
res0 = GENMASK(63, 40) | GENMASK(30, 24);
res1 = BIT(31);
set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1);
/* HCR_EL2 */
get_reg_fixed_bits(kvm, HCR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCR_EL2, res0, res1);
/* HCRX_EL2 */
get_reg_fixed_bits(kvm, HCRX_EL2, &res0, &res1);
set_sysreg_masks(kvm, HCRX_EL2, res0, res1);
/* HFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR_EL2, res0, res1);
/* HDFG[RW]TR_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR_EL2, res0, res1);
/* HFGITR_EL2 */
get_reg_fixed_bits(kvm, HFGITR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR_EL2, res0, res1);
/* HAFGRTR_EL2 - not a lot to see here */
get_reg_fixed_bits(kvm, HAFGRTR_EL2, &res0, &res1);
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
/* HFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGWTR2_EL2, res0, res1);
/* HDFG[RW]TR2_EL2 */
get_reg_fixed_bits(kvm, HDFGRTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGRTR2_EL2, res0, res1);
get_reg_fixed_bits(kvm, HDFGWTR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HDFGWTR2_EL2, res0, res1);
/* HFGITR2_EL2 */
get_reg_fixed_bits(kvm, HFGITR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, HFGITR2_EL2, res0, res1);
/* TCR2_EL2 */
get_reg_fixed_bits(kvm, TCR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, TCR2_EL2, res0, res1);
/* SCTLR_EL1 */
get_reg_fixed_bits(kvm, SCTLR_EL1, &res0, &res1);
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
/* SCTLR2_ELx */
get_reg_fixed_bits(kvm, SCTLR2_EL1, &res0, &res1);
set_sysreg_masks(kvm, SCTLR2_EL1, res0, res1);
get_reg_fixed_bits(kvm, SCTLR2_EL2, &res0, &res1);
set_sysreg_masks(kvm, SCTLR2_EL2, res0, res1);
/* MDCR_EL2 */
get_reg_fixed_bits(kvm, MDCR_EL2, &res0, &res1);
set_sysreg_masks(kvm, MDCR_EL2, res0, res1);
/* CNTHCTL_EL2 */
res0 = GENMASK(63, 20);
res1 = 0;
if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP))
res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) {
res0 |= CNTHCTL_ECV;
if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP))
res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT |
CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT);
}
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP))
res0 |= GENMASK(11, 8);
set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1);
/* ICH_HCR_EL2 */
res0 = ICH_HCR_EL2_RES0;
res1 = ICH_HCR_EL2_RES1;
if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS))
res0 |= ICH_HCR_EL2_TDIR;
/* No GICv4 is presented to the guest */
res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount;
set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1);
/* VNCR_EL2 */
set_sysreg_masks(kvm, VNCR_EL2, VNCR_EL2_RES0, VNCR_EL2_RES1);
out:
for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++)
__vcpu_rmw_sys_reg(vcpu, sr, |=, 0);
return 0;
}
void check_nested_vcpu_requests(struct kvm_vcpu *vcpu)
{
if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) {
struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu;
write_lock(&vcpu->kvm->mmu_lock);
if (mmu->pending_unmap) {
kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true);
mmu->pending_unmap = false;
}
write_unlock(&vcpu->kvm->mmu_lock);
}
if (kvm_check_request(KVM_REQ_MAP_L1_VNCR_EL2, vcpu))
kvm_map_l1_vncr(vcpu);
/* Must be last, as may switch context! */
if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu))
kvm_inject_nested_irq(vcpu);
}
/*
* One of the many architectural bugs in FEAT_NV2 is that the guest hypervisor
* can write to HCR_EL2 behind our back, potentially changing the exception
* routing / masking for even the host context.
*
* What follows is some slop to (1) react to exception routing / masking and (2)
* preserve the pending SError state across translation regimes.
*/
void kvm_nested_flush_hwstate(struct kvm_vcpu *vcpu)
{
if (!vcpu_has_nv(vcpu))
return;
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
}
void kvm_nested_sync_hwstate(struct kvm_vcpu *vcpu)
{
unsigned long *hcr = vcpu_hcr(vcpu);
if (!vcpu_has_nv(vcpu))
return;
/*
* We previously decided that an SError was deliverable to the guest.
* Reap the pending state from HCR_EL2 and...
*/
if (unlikely(__test_and_clear_bit(__ffs(HCR_VSE), hcr)))
vcpu_set_flag(vcpu, NESTED_SERROR_PENDING);
/*
* Re-attempt SError injection in case the deliverability has changed,
* which is necessary to faithfully emulate WFI the case of a pending
* SError being a wakeup condition.
*/
if (unlikely(vcpu_test_and_clear_flag(vcpu, NESTED_SERROR_PENDING)))
kvm_inject_serror_esr(vcpu, vcpu_get_vsesr(vcpu));
}
/*
* KVM unconditionally sets most of these traps anyway but use an allowlist
* to document the guest hypervisor traps that may take precedence and guard
* against future changes to the non-nested trap configuration.
*/
#define NV_MDCR_GUEST_INCLUDE (MDCR_EL2_TDE | \
MDCR_EL2_TDA | \
MDCR_EL2_TDRA | \
MDCR_EL2_TTRF | \
MDCR_EL2_TPMS | \
MDCR_EL2_TPM | \
MDCR_EL2_TPMCR | \
MDCR_EL2_TDCC | \
MDCR_EL2_TDOSA)
void kvm_nested_setup_mdcr_el2(struct kvm_vcpu *vcpu)
{
u64 guest_mdcr = __vcpu_sys_reg(vcpu, MDCR_EL2);
if (is_nested_ctxt(vcpu))
vcpu->arch.mdcr_el2 |= (guest_mdcr & NV_MDCR_GUEST_INCLUDE);
/*
* In yet another example where FEAT_NV2 is fscking broken, accesses
* to MDSCR_EL1 are redirected to the VNCR despite having an effect
* at EL2. Use a big hammer to apply sanity.
*
* Unless of course we have FEAT_FGT, in which case we can precisely
* trap MDSCR_EL1.
*/
else if (!cpus_have_final_cap(ARM64_HAS_FGT))
vcpu->arch.mdcr_el2 |= MDCR_EL2_TDA;
}
|