1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
/*
* Refer to Documentation/block/inline-encryption.rst for detailed explanation.
*/
#define pr_fmt(fmt) "blk-crypto: " fmt
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/blk-crypto-profile.h>
#include <linux/module.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include "blk-crypto-internal.h"
const struct blk_crypto_mode blk_crypto_modes[] = {
[BLK_ENCRYPTION_MODE_AES_256_XTS] = {
.name = "AES-256-XTS",
.cipher_str = "xts(aes)",
.keysize = 64,
.security_strength = 32,
.ivsize = 16,
},
[BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
.name = "AES-128-CBC-ESSIV",
.cipher_str = "essiv(cbc(aes),sha256)",
.keysize = 16,
.security_strength = 16,
.ivsize = 16,
},
[BLK_ENCRYPTION_MODE_ADIANTUM] = {
.name = "Adiantum",
.cipher_str = "adiantum(xchacha12,aes)",
.keysize = 32,
.security_strength = 32,
.ivsize = 32,
},
[BLK_ENCRYPTION_MODE_SM4_XTS] = {
.name = "SM4-XTS",
.cipher_str = "xts(sm4)",
.keysize = 32,
.security_strength = 16,
.ivsize = 16,
},
};
/*
* This number needs to be at least (the number of threads doing IO
* concurrently) * (maximum recursive depth of a bio), so that we don't
* deadlock on crypt_ctx allocations. The default is chosen to be the same
* as the default number of post read contexts in both EXT4 and F2FS.
*/
static int num_prealloc_crypt_ctxs = 128;
module_param(num_prealloc_crypt_ctxs, int, 0444);
MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
"Number of bio crypto contexts to preallocate");
static struct kmem_cache *bio_crypt_ctx_cache;
static mempool_t *bio_crypt_ctx_pool;
static int __init bio_crypt_ctx_init(void)
{
size_t i;
bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
if (!bio_crypt_ctx_cache)
goto out_no_mem;
bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
bio_crypt_ctx_cache);
if (!bio_crypt_ctx_pool)
goto out_no_mem;
/* This is assumed in various places. */
BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
/*
* Validate the crypto mode properties. This ideally would be done with
* static assertions, but boot-time checks are the next best thing.
*/
for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
BUG_ON(blk_crypto_modes[i].keysize >
BLK_CRYPTO_MAX_RAW_KEY_SIZE);
BUG_ON(blk_crypto_modes[i].security_strength >
blk_crypto_modes[i].keysize);
BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
}
return 0;
out_no_mem:
panic("Failed to allocate mem for bio crypt ctxs\n");
}
subsys_initcall(bio_crypt_ctx_init);
void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
{
struct bio_crypt_ctx *bc;
/*
* The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
* that the mempool_alloc() can't fail.
*/
WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
bc->bc_key = key;
memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
bio->bi_crypt_context = bc;
}
void __bio_crypt_free_ctx(struct bio *bio)
{
mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
bio->bi_crypt_context = NULL;
}
int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
{
dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
if (!dst->bi_crypt_context)
return -ENOMEM;
*dst->bi_crypt_context = *src->bi_crypt_context;
return 0;
}
/* Increments @dun by @inc, treating @dun as a multi-limb integer. */
void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
unsigned int inc)
{
int i;
for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
dun[i] += inc;
/*
* If the addition in this limb overflowed, then we need to
* carry 1 into the next limb. Else the carry is 0.
*/
if (dun[i] < inc)
inc = 1;
else
inc = 0;
}
}
void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
{
struct bio_crypt_ctx *bc = bio->bi_crypt_context;
bio_crypt_dun_increment(bc->bc_dun,
bytes >> bc->bc_key->data_unit_size_bits);
}
/*
* Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
* @next_dun, treating the DUNs as multi-limb integers.
*/
bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
unsigned int bytes,
const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
{
int i;
unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
if (bc->bc_dun[i] + carry != next_dun[i])
return false;
/*
* If the addition in this limb overflowed, then we need to
* carry 1 into the next limb. Else the carry is 0.
*/
if ((bc->bc_dun[i] + carry) < carry)
carry = 1;
else
carry = 0;
}
/* If the DUN wrapped through 0, don't treat it as contiguous. */
return carry == 0;
}
/*
* Checks that two bio crypt contexts are compatible - i.e. that
* they are mergeable except for data_unit_num continuity.
*/
static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
struct bio_crypt_ctx *bc2)
{
if (!bc1)
return !bc2;
return bc2 && bc1->bc_key == bc2->bc_key;
}
bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
{
return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
}
/*
* Checks that two bio crypt contexts are compatible, and also
* that their data_unit_nums are continuous (and can hence be merged)
* in the order @bc1 followed by @bc2.
*/
bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
struct bio_crypt_ctx *bc2)
{
if (!bio_crypt_ctx_compatible(bc1, bc2))
return false;
return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
}
/* Check that all I/O segments are data unit aligned. */
static bool bio_crypt_check_alignment(struct bio *bio)
{
const unsigned int data_unit_size =
bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
struct bvec_iter iter;
struct bio_vec bv;
bio_for_each_segment(bv, bio, iter) {
if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
return false;
}
return true;
}
blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
{
return blk_crypto_get_keyslot(rq->q->crypto_profile,
rq->crypt_ctx->bc_key,
&rq->crypt_keyslot);
}
void __blk_crypto_rq_put_keyslot(struct request *rq)
{
blk_crypto_put_keyslot(rq->crypt_keyslot);
rq->crypt_keyslot = NULL;
}
void __blk_crypto_free_request(struct request *rq)
{
/* The keyslot, if one was needed, should have been released earlier. */
if (WARN_ON_ONCE(rq->crypt_keyslot))
__blk_crypto_rq_put_keyslot(rq);
mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
rq->crypt_ctx = NULL;
}
/**
* __blk_crypto_bio_prep - Prepare bio for inline encryption
*
* @bio_ptr: pointer to original bio pointer
*
* If the bio crypt context provided for the bio is supported by the underlying
* device's inline encryption hardware, do nothing.
*
* Otherwise, try to perform en/decryption for this bio by falling back to the
* kernel crypto API. When the crypto API fallback is used for encryption,
* blk-crypto may choose to split the bio into 2 - the first one that will
* continue to be processed and the second one that will be resubmitted via
* submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
* of the aforementioned "first one", and *bio_ptr will be updated to this
* bounce bio.
*
* Caller must ensure bio has bio_crypt_ctx.
*
* Return: true on success; false on error (and bio->bi_status will be set
* appropriately, and bio_endio() will have been called so bio
* submission should abort).
*/
bool __blk_crypto_bio_prep(struct bio **bio_ptr)
{
struct bio *bio = *bio_ptr;
const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
/* Error if bio has no data. */
if (WARN_ON_ONCE(!bio_has_data(bio))) {
bio->bi_status = BLK_STS_IOERR;
goto fail;
}
if (!bio_crypt_check_alignment(bio)) {
bio->bi_status = BLK_STS_INVAL;
goto fail;
}
/*
* Success if device supports the encryption context, or if we succeeded
* in falling back to the crypto API.
*/
if (blk_crypto_config_supported_natively(bio->bi_bdev,
&bc_key->crypto_cfg))
return true;
if (blk_crypto_fallback_bio_prep(bio_ptr))
return true;
fail:
bio_endio(*bio_ptr);
return false;
}
int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
gfp_t gfp_mask)
{
if (!rq->crypt_ctx) {
rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
if (!rq->crypt_ctx)
return -ENOMEM;
}
*rq->crypt_ctx = *bio->bi_crypt_context;
return 0;
}
/**
* blk_crypto_init_key() - Prepare a key for use with blk-crypto
* @blk_key: Pointer to the blk_crypto_key to initialize.
* @key_bytes: the bytes of the key
* @key_size: size of the key in bytes
* @key_type: type of the key -- either raw or hardware-wrapped
* @crypto_mode: identifier for the encryption algorithm to use
* @dun_bytes: number of bytes that will be used to specify the DUN when this
* key is used
* @data_unit_size: the data unit size to use for en/decryption
*
* Return: 0 on success, -errno on failure. The caller is responsible for
* zeroizing both blk_key and key_bytes when done with them.
*/
int blk_crypto_init_key(struct blk_crypto_key *blk_key,
const u8 *key_bytes, size_t key_size,
enum blk_crypto_key_type key_type,
enum blk_crypto_mode_num crypto_mode,
unsigned int dun_bytes,
unsigned int data_unit_size)
{
const struct blk_crypto_mode *mode;
memset(blk_key, 0, sizeof(*blk_key));
if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
return -EINVAL;
mode = &blk_crypto_modes[crypto_mode];
switch (key_type) {
case BLK_CRYPTO_KEY_TYPE_RAW:
if (key_size != mode->keysize)
return -EINVAL;
break;
case BLK_CRYPTO_KEY_TYPE_HW_WRAPPED:
if (key_size < mode->security_strength ||
key_size > BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE)
return -EINVAL;
break;
default:
return -EINVAL;
}
if (dun_bytes == 0 || dun_bytes > mode->ivsize)
return -EINVAL;
if (!is_power_of_2(data_unit_size))
return -EINVAL;
blk_key->crypto_cfg.crypto_mode = crypto_mode;
blk_key->crypto_cfg.dun_bytes = dun_bytes;
blk_key->crypto_cfg.data_unit_size = data_unit_size;
blk_key->crypto_cfg.key_type = key_type;
blk_key->data_unit_size_bits = ilog2(data_unit_size);
blk_key->size = key_size;
memcpy(blk_key->bytes, key_bytes, key_size);
return 0;
}
bool blk_crypto_config_supported_natively(struct block_device *bdev,
const struct blk_crypto_config *cfg)
{
return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
cfg);
}
/*
* Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
* block_device it's submitted to supports inline crypto, or the
* blk-crypto-fallback is enabled and supports the cfg).
*/
bool blk_crypto_config_supported(struct block_device *bdev,
const struct blk_crypto_config *cfg)
{
if (IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) &&
cfg->key_type == BLK_CRYPTO_KEY_TYPE_RAW)
return true;
return blk_crypto_config_supported_natively(bdev, cfg);
}
/**
* blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
* @bdev: block device to operate on
* @key: A key to use on the device
*
* Upper layers must call this function to ensure that either the hardware
* supports the key's crypto settings, or the crypto API fallback has transforms
* for the needed mode allocated and ready to go. This function may allocate
* an skcipher, and *should not* be called from the data path, since that might
* cause a deadlock
*
* Return: 0 on success; -EOPNOTSUPP if the key is wrapped but the hardware does
* not support wrapped keys; -ENOPKG if the key is a raw key but the
* hardware does not support raw keys and blk-crypto-fallback is either
* disabled or the needed algorithm is disabled in the crypto API; or
* another -errno code if something else went wrong.
*/
int blk_crypto_start_using_key(struct block_device *bdev,
const struct blk_crypto_key *key)
{
if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
return 0;
if (key->crypto_cfg.key_type != BLK_CRYPTO_KEY_TYPE_RAW) {
pr_warn_ratelimited("%pg: no support for wrapped keys\n", bdev);
return -EOPNOTSUPP;
}
return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
}
/**
* blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
* @bdev: a block_device on which I/O using the key may have been done
* @key: the key to evict
*
* For a given block_device, this function removes the given blk_crypto_key from
* the keyslot management structures and evicts it from any underlying hardware
* keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
*
* Upper layers must call this before freeing the blk_crypto_key. It must be
* called for every block_device the key may have been used on. The key must no
* longer be in use by any I/O when this function is called.
*
* Context: May sleep.
*/
void blk_crypto_evict_key(struct block_device *bdev,
const struct blk_crypto_key *key)
{
struct request_queue *q = bdev_get_queue(bdev);
int err;
if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
err = __blk_crypto_evict_key(q->crypto_profile, key);
else
err = blk_crypto_fallback_evict_key(key);
/*
* An error can only occur here if the key failed to be evicted from a
* keyslot (due to a hardware or driver issue) or is allegedly still in
* use by I/O (due to a kernel bug). Even in these cases, the key is
* still unlinked from the keyslot management structures, and the caller
* is allowed and expected to free it right away. There's nothing
* callers can do to handle errors, so just log them and return void.
*/
if (err)
pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
}
EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
static int blk_crypto_ioctl_import_key(struct blk_crypto_profile *profile,
void __user *argp)
{
struct blk_crypto_import_key_arg arg;
u8 raw_key[BLK_CRYPTO_MAX_RAW_KEY_SIZE];
u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
int ret;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
return -EINVAL;
if (arg.raw_key_size < 16 || arg.raw_key_size > sizeof(raw_key))
return -EINVAL;
if (copy_from_user(raw_key, u64_to_user_ptr(arg.raw_key_ptr),
arg.raw_key_size)) {
ret = -EFAULT;
goto out;
}
ret = blk_crypto_import_key(profile, raw_key, arg.raw_key_size, lt_key);
if (ret < 0)
goto out;
if (ret > arg.lt_key_size) {
ret = -EOVERFLOW;
goto out;
}
arg.lt_key_size = ret;
if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
arg.lt_key_size) ||
copy_to_user(argp, &arg, sizeof(arg))) {
ret = -EFAULT;
goto out;
}
ret = 0;
out:
memzero_explicit(raw_key, sizeof(raw_key));
memzero_explicit(lt_key, sizeof(lt_key));
return ret;
}
static int blk_crypto_ioctl_generate_key(struct blk_crypto_profile *profile,
void __user *argp)
{
struct blk_crypto_generate_key_arg arg;
u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
int ret;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
return -EINVAL;
ret = blk_crypto_generate_key(profile, lt_key);
if (ret < 0)
goto out;
if (ret > arg.lt_key_size) {
ret = -EOVERFLOW;
goto out;
}
arg.lt_key_size = ret;
if (copy_to_user(u64_to_user_ptr(arg.lt_key_ptr), lt_key,
arg.lt_key_size) ||
copy_to_user(argp, &arg, sizeof(arg))) {
ret = -EFAULT;
goto out;
}
ret = 0;
out:
memzero_explicit(lt_key, sizeof(lt_key));
return ret;
}
static int blk_crypto_ioctl_prepare_key(struct blk_crypto_profile *profile,
void __user *argp)
{
struct blk_crypto_prepare_key_arg arg;
u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE];
int ret;
if (copy_from_user(&arg, argp, sizeof(arg)))
return -EFAULT;
if (memchr_inv(arg.reserved, 0, sizeof(arg.reserved)))
return -EINVAL;
if (arg.lt_key_size > sizeof(lt_key))
return -EINVAL;
if (copy_from_user(lt_key, u64_to_user_ptr(arg.lt_key_ptr),
arg.lt_key_size)) {
ret = -EFAULT;
goto out;
}
ret = blk_crypto_prepare_key(profile, lt_key, arg.lt_key_size, eph_key);
if (ret < 0)
goto out;
if (ret > arg.eph_key_size) {
ret = -EOVERFLOW;
goto out;
}
arg.eph_key_size = ret;
if (copy_to_user(u64_to_user_ptr(arg.eph_key_ptr), eph_key,
arg.eph_key_size) ||
copy_to_user(argp, &arg, sizeof(arg))) {
ret = -EFAULT;
goto out;
}
ret = 0;
out:
memzero_explicit(lt_key, sizeof(lt_key));
memzero_explicit(eph_key, sizeof(eph_key));
return ret;
}
int blk_crypto_ioctl(struct block_device *bdev, unsigned int cmd,
void __user *argp)
{
struct blk_crypto_profile *profile =
bdev_get_queue(bdev)->crypto_profile;
if (!profile)
return -EOPNOTSUPP;
switch (cmd) {
case BLKCRYPTOIMPORTKEY:
return blk_crypto_ioctl_import_key(profile, argp);
case BLKCRYPTOGENERATEKEY:
return blk_crypto_ioctl_generate_key(profile, argp);
case BLKCRYPTOPREPAREKEY:
return blk_crypto_ioctl_prepare_key(profile, argp);
default:
return -ENOTTY;
}
}
|