1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_bb.h"
#include "instructions/xe_mi_commands.h"
#include "xe_assert.h"
#include "xe_device.h"
#include "xe_exec_queue_types.h"
#include "xe_gt.h"
#include "xe_hw_fence.h"
#include "xe_sa.h"
#include "xe_sched_job.h"
#include "xe_vm_types.h"
static int bb_prefetch(struct xe_gt *gt)
{
struct xe_device *xe = gt_to_xe(gt);
if (GRAPHICS_VERx100(xe) >= 1250 && xe_gt_is_main_type(gt))
/*
* RCS and CCS require 1K, although other engines would be
* okay with 512.
*/
return SZ_1K;
else
return SZ_512;
}
struct xe_bb *xe_bb_new(struct xe_gt *gt, u32 dwords, bool usm)
{
struct xe_tile *tile = gt_to_tile(gt);
struct xe_bb *bb = kmalloc(sizeof(*bb), GFP_KERNEL);
int err;
if (!bb)
return ERR_PTR(-ENOMEM);
/*
* We need to allocate space for the requested number of dwords,
* one additional MI_BATCH_BUFFER_END dword, and additional buffer
* space to accommodate the platform-specific hardware prefetch
* requirements.
*/
bb->bo = xe_sa_bo_new(!usm ? tile->mem.kernel_bb_pool : gt->usm.bb_pool,
4 * (dwords + 1) + bb_prefetch(gt));
if (IS_ERR(bb->bo)) {
err = PTR_ERR(bb->bo);
goto err;
}
bb->cs = xe_sa_bo_cpu_addr(bb->bo);
bb->len = 0;
return bb;
err:
kfree(bb);
return ERR_PTR(err);
}
struct xe_bb *xe_bb_ccs_new(struct xe_gt *gt, u32 dwords,
enum xe_sriov_vf_ccs_rw_ctxs ctx_id)
{
struct xe_bb *bb = kmalloc(sizeof(*bb), GFP_KERNEL);
struct xe_device *xe = gt_to_xe(gt);
struct xe_sa_manager *bb_pool;
int err;
if (!bb)
return ERR_PTR(-ENOMEM);
/*
* We need to allocate space for the requested number of dwords &
* one additional MI_BATCH_BUFFER_END dword. Since the whole SA
* is submitted to HW, we need to make sure that the last instruction
* is not over written when the last chunk of SA is allocated for BB.
* So, this extra DW acts as a guard here.
*/
bb_pool = xe->sriov.vf.ccs.contexts[ctx_id].mem.ccs_bb_pool;
bb->bo = xe_sa_bo_new(bb_pool, 4 * (dwords + 1));
if (IS_ERR(bb->bo)) {
err = PTR_ERR(bb->bo);
goto err;
}
bb->cs = xe_sa_bo_cpu_addr(bb->bo);
bb->len = 0;
return bb;
err:
kfree(bb);
return ERR_PTR(err);
}
static struct xe_sched_job *
__xe_bb_create_job(struct xe_exec_queue *q, struct xe_bb *bb, u64 *addr)
{
u32 size = drm_suballoc_size(bb->bo);
if (bb->len == 0 || bb->cs[bb->len - 1] != MI_BATCH_BUFFER_END)
bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
xe_gt_assert(q->gt, bb->len * 4 + bb_prefetch(q->gt) <= size);
xe_sa_bo_flush_write(bb->bo);
return xe_sched_job_create(q, addr);
}
struct xe_sched_job *xe_bb_create_migration_job(struct xe_exec_queue *q,
struct xe_bb *bb,
u64 batch_base_ofs,
u32 second_idx)
{
u64 addr[2] = {
batch_base_ofs + drm_suballoc_soffset(bb->bo),
batch_base_ofs + drm_suballoc_soffset(bb->bo) +
4 * second_idx,
};
xe_gt_assert(q->gt, second_idx <= bb->len);
xe_gt_assert(q->gt, xe_sched_job_is_migration(q));
xe_gt_assert(q->gt, q->width == 1);
return __xe_bb_create_job(q, bb, addr);
}
struct xe_sched_job *xe_bb_create_job(struct xe_exec_queue *q,
struct xe_bb *bb)
{
u64 addr = xe_sa_bo_gpu_addr(bb->bo);
xe_gt_assert(q->gt, !xe_sched_job_is_migration(q));
xe_gt_assert(q->gt, q->width == 1);
return __xe_bb_create_job(q, bb, &addr);
}
void xe_bb_free(struct xe_bb *bb, struct dma_fence *fence)
{
if (!bb)
return;
xe_sa_bo_free(bb->bo, fence);
kfree(bb);
}
|