1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/blk_types.h>
#include "cache.h"
#include "cache_dev.h"
#include "backing_dev.h"
#include "dm_pcache.h"
struct kmem_cache *key_cache;
static inline struct pcache_cache_info *get_cache_info_addr(struct pcache_cache *cache)
{
return (struct pcache_cache_info *)((char *)cache->cache_info_addr +
(size_t)cache->info_index * PCACHE_CACHE_INFO_SIZE);
}
static void cache_info_write(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
cache_info->header.seq++;
cache_info->header.crc = pcache_meta_crc(&cache_info->header,
sizeof(struct pcache_cache_info));
cache->info_index = (cache->info_index + 1) % PCACHE_META_INDEX_MAX;
memcpy_flushcache(get_cache_info_addr(cache), cache_info,
sizeof(struct pcache_cache_info));
pmem_wmb();
}
static void cache_info_init_default(struct pcache_cache *cache);
static int cache_info_init(struct pcache_cache *cache, struct pcache_cache_options *opts)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_info *cache_info_addr;
cache_info_addr = pcache_meta_find_latest(&cache->cache_info_addr->header,
sizeof(struct pcache_cache_info),
PCACHE_CACHE_INFO_SIZE,
&cache->cache_info);
if (IS_ERR(cache_info_addr))
return PTR_ERR(cache_info_addr);
if (cache_info_addr) {
if (opts->data_crc !=
(cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC)) {
pcache_dev_err(pcache, "invalid option for data_crc: %s, expected: %s",
opts->data_crc ? "true" : "false",
cache->cache_info.flags & PCACHE_CACHE_FLAGS_DATA_CRC ? "true" : "false");
return -EINVAL;
}
cache->info_index = ((char *)cache_info_addr - (char *)cache->cache_info_addr) / PCACHE_CACHE_INFO_SIZE;
return 0;
}
/* init cache_info for new cache */
cache_info_init_default(cache);
cache_mode_set(cache, opts->cache_mode);
if (opts->data_crc)
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_DATA_CRC;
return 0;
}
static void cache_info_set_gc_percent(struct pcache_cache_info *cache_info, u8 percent)
{
cache_info->flags &= ~PCACHE_CACHE_FLAGS_GC_PERCENT_MASK;
cache_info->flags |= FIELD_PREP(PCACHE_CACHE_FLAGS_GC_PERCENT_MASK, percent);
}
int pcache_cache_set_gc_percent(struct pcache_cache *cache, u8 percent)
{
if (percent > PCACHE_CACHE_GC_PERCENT_MAX || percent < PCACHE_CACHE_GC_PERCENT_MIN)
return -EINVAL;
mutex_lock(&cache->cache_info_lock);
cache_info_set_gc_percent(&cache->cache_info, percent);
cache_info_write(cache);
mutex_unlock(&cache->cache_info_lock);
return 0;
}
void cache_pos_encode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia_base,
struct pcache_cache_pos *pos, u64 seq, u32 *index)
{
struct pcache_cache_pos_onmedia pos_onmedia;
struct pcache_cache_pos_onmedia *pos_onmedia_addr = pos_onmedia_base + *index;
pos_onmedia.cache_seg_id = pos->cache_seg->cache_seg_id;
pos_onmedia.seg_off = pos->seg_off;
pos_onmedia.header.seq = seq;
pos_onmedia.header.crc = cache_pos_onmedia_crc(&pos_onmedia);
*index = (*index + 1) % PCACHE_META_INDEX_MAX;
memcpy_flushcache(pos_onmedia_addr, &pos_onmedia, sizeof(struct pcache_cache_pos_onmedia));
pmem_wmb();
}
int cache_pos_decode(struct pcache_cache *cache,
struct pcache_cache_pos_onmedia *pos_onmedia,
struct pcache_cache_pos *pos, u64 *seq, u32 *index)
{
struct pcache_cache_pos_onmedia latest, *latest_addr;
latest_addr = pcache_meta_find_latest(&pos_onmedia->header,
sizeof(struct pcache_cache_pos_onmedia),
sizeof(struct pcache_cache_pos_onmedia),
&latest);
if (IS_ERR(latest_addr))
return PTR_ERR(latest_addr);
if (!latest_addr)
return -EIO;
pos->cache_seg = &cache->segments[latest.cache_seg_id];
pos->seg_off = latest.seg_off;
*seq = latest.header.seq;
*index = (latest_addr - pos_onmedia);
return 0;
}
static inline void cache_info_set_seg_id(struct pcache_cache *cache, u32 seg_id)
{
cache->cache_info.seg_id = seg_id;
}
static int cache_init(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache_dev *cache_dev = &pcache->cache_dev;
int ret;
cache->segments = kvcalloc(cache_dev->seg_num, sizeof(struct pcache_cache_segment), GFP_KERNEL);
if (!cache->segments) {
ret = -ENOMEM;
goto err;
}
cache->seg_map = kvcalloc(BITS_TO_LONGS(cache_dev->seg_num), sizeof(unsigned long), GFP_KERNEL);
if (!cache->seg_map) {
ret = -ENOMEM;
goto free_segments;
}
cache->backing_dev = backing_dev;
cache->cache_dev = &pcache->cache_dev;
cache->n_segs = cache_dev->seg_num;
atomic_set(&cache->gc_errors, 0);
spin_lock_init(&cache->seg_map_lock);
spin_lock_init(&cache->key_head_lock);
mutex_init(&cache->cache_info_lock);
mutex_init(&cache->key_tail_lock);
mutex_init(&cache->dirty_tail_lock);
mutex_init(&cache->writeback_lock);
INIT_DELAYED_WORK(&cache->writeback_work, cache_writeback_fn);
INIT_DELAYED_WORK(&cache->gc_work, pcache_cache_gc_fn);
INIT_WORK(&cache->clean_work, clean_fn);
return 0;
free_segments:
kvfree(cache->segments);
err:
return ret;
}
static void cache_exit(struct pcache_cache *cache)
{
kvfree(cache->seg_map);
kvfree(cache->segments);
}
static void cache_info_init_default(struct pcache_cache *cache)
{
struct pcache_cache_info *cache_info = &cache->cache_info;
memset(cache_info, 0, sizeof(*cache_info));
cache_info->n_segs = cache->cache_dev->seg_num;
cache_info_set_gc_percent(cache_info, PCACHE_CACHE_GC_PERCENT_DEFAULT);
}
static int cache_tail_init(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
if (new_cache) {
__set_bit(0, cache->seg_map);
cache->key_head.cache_seg = &cache->segments[0];
cache->key_head.seg_off = 0;
cache_pos_copy(&cache->key_tail, &cache->key_head);
cache_pos_copy(&cache->dirty_tail, &cache->key_head);
cache_encode_dirty_tail(cache);
cache_encode_key_tail(cache);
} else {
if (cache_decode_key_tail(cache) || cache_decode_dirty_tail(cache)) {
pcache_dev_err(pcache, "Corrupted key tail or dirty tail.\n");
return -EIO;
}
}
return 0;
}
static int get_seg_id(struct pcache_cache *cache,
struct pcache_cache_segment *prev_cache_seg,
bool new_cache, u32 *seg_id)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
struct pcache_cache_dev *cache_dev = cache->cache_dev;
int ret;
if (new_cache) {
ret = cache_dev_get_empty_segment_id(cache_dev, seg_id);
if (ret) {
pcache_dev_err(pcache, "no available segment\n");
goto err;
}
if (prev_cache_seg)
cache_seg_set_next_seg(prev_cache_seg, *seg_id);
else
cache_info_set_seg_id(cache, *seg_id);
} else {
if (prev_cache_seg) {
struct pcache_segment_info *prev_seg_info;
prev_seg_info = &prev_cache_seg->cache_seg_info;
if (!segment_info_has_next(prev_seg_info)) {
ret = -EFAULT;
goto err;
}
*seg_id = prev_cache_seg->cache_seg_info.next_seg;
} else {
*seg_id = cache->cache_info.seg_id;
}
}
return 0;
err:
return ret;
}
static int cache_segs_init(struct pcache_cache *cache)
{
struct pcache_cache_segment *prev_cache_seg = NULL;
struct pcache_cache_info *cache_info = &cache->cache_info;
bool new_cache = !(cache->cache_info.flags & PCACHE_CACHE_FLAGS_INIT_DONE);
u32 seg_id;
int ret;
u32 i;
for (i = 0; i < cache_info->n_segs; i++) {
ret = get_seg_id(cache, prev_cache_seg, new_cache, &seg_id);
if (ret)
goto err;
ret = cache_seg_init(cache, seg_id, i, new_cache);
if (ret)
goto err;
prev_cache_seg = &cache->segments[i];
}
return 0;
err:
return ret;
}
static int cache_init_req_keys(struct pcache_cache *cache, u32 n_paral)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
u32 n_subtrees;
int ret;
u32 i, cpu;
/* Calculate number of cache trees based on the device size */
n_subtrees = DIV_ROUND_UP(cache->dev_size << SECTOR_SHIFT, PCACHE_CACHE_SUBTREE_SIZE);
ret = cache_tree_init(cache, &cache->req_key_tree, n_subtrees);
if (ret)
goto err;
cache->n_ksets = n_paral;
cache->ksets = kvcalloc(cache->n_ksets, PCACHE_KSET_SIZE, GFP_KERNEL);
if (!cache->ksets) {
ret = -ENOMEM;
goto req_tree_exit;
}
/*
* Initialize each kset with a spinlock and delayed work for flushing.
* Each kset is associated with one queue to ensure independent handling
* of cache keys across multiple queues, maximizing multiqueue concurrency.
*/
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
kset->cache = cache;
spin_lock_init(&kset->kset_lock);
INIT_DELAYED_WORK(&kset->flush_work, kset_flush_fn);
}
cache->data_heads = alloc_percpu(struct pcache_cache_data_head);
if (!cache->data_heads) {
ret = -ENOMEM;
goto free_kset;
}
for_each_possible_cpu(cpu) {
struct pcache_cache_data_head *h =
per_cpu_ptr(cache->data_heads, cpu);
h->head_pos.cache_seg = NULL;
}
/*
* Replay persisted cache keys using cache_replay.
* This function loads and replays cache keys from previously stored
* ksets, allowing the cache to restore its state after a restart.
*/
ret = cache_replay(cache);
if (ret) {
pcache_dev_err(pcache, "failed to replay keys\n");
goto free_heads;
}
return 0;
free_heads:
free_percpu(cache->data_heads);
free_kset:
kvfree(cache->ksets);
req_tree_exit:
cache_tree_exit(&cache->req_key_tree);
err:
return ret;
}
static void cache_destroy_req_keys(struct pcache_cache *cache)
{
u32 i;
for (i = 0; i < cache->n_ksets; i++) {
struct pcache_cache_kset *kset = get_kset(cache, i);
cancel_delayed_work_sync(&kset->flush_work);
}
free_percpu(cache->data_heads);
kvfree(cache->ksets);
cache_tree_exit(&cache->req_key_tree);
}
int pcache_cache_start(struct dm_pcache *pcache)
{
struct pcache_backing_dev *backing_dev = &pcache->backing_dev;
struct pcache_cache *cache = &pcache->cache;
struct pcache_cache_options *opts = &pcache->opts;
int ret;
ret = cache_init(pcache);
if (ret)
return ret;
cache->cache_info_addr = CACHE_DEV_CACHE_INFO(cache->cache_dev);
cache->cache_ctrl = CACHE_DEV_CACHE_CTRL(cache->cache_dev);
backing_dev->cache = cache;
cache->dev_size = backing_dev->dev_size;
ret = cache_info_init(cache, opts);
if (ret)
goto cache_exit;
ret = cache_segs_init(cache);
if (ret)
goto cache_exit;
ret = cache_tail_init(cache);
if (ret)
goto cache_exit;
ret = cache_init_req_keys(cache, num_online_cpus());
if (ret)
goto cache_exit;
ret = cache_writeback_init(cache);
if (ret)
goto destroy_keys;
cache->cache_info.flags |= PCACHE_CACHE_FLAGS_INIT_DONE;
cache_info_write(cache);
queue_delayed_work(cache_get_wq(cache), &cache->gc_work, 0);
return 0;
destroy_keys:
cache_destroy_req_keys(cache);
cache_exit:
cache_exit(cache);
return ret;
}
void pcache_cache_stop(struct dm_pcache *pcache)
{
struct pcache_cache *cache = &pcache->cache;
pcache_cache_flush(cache);
cancel_delayed_work_sync(&cache->gc_work);
flush_work(&cache->clean_work);
cache_writeback_exit(cache);
if (cache->req_key_tree.n_subtrees)
cache_destroy_req_keys(cache);
cache_exit(cache);
}
struct workqueue_struct *cache_get_wq(struct pcache_cache *cache)
{
struct dm_pcache *pcache = CACHE_TO_PCACHE(cache);
return pcache->task_wq;
}
int pcache_cache_init(void)
{
key_cache = KMEM_CACHE(pcache_cache_key, 0);
if (!key_cache)
return -ENOMEM;
return 0;
}
void pcache_cache_exit(void)
{
kmem_cache_destroy(key_cache);
}
|