1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2022-2024 Canaan Bright Sight Co., Ltd
* Copyright (C) 2024-2025 Junhui Liu <junhui.liu@pigmoral.tech>
*
* The reset management module in the K230 SoC provides reset time control
* registers. For RST_TYPE_CPU0, RST_TYPE_CPU1 and RST_TYPE_SW_DONE, the period
* during which reset is applied or removed while the clock is stopped can be
* set up to 15 * 0.25 = 3.75 µs. For RST_TYPE_HW_DONE, that period can be set
* up to 255 * 0.25 = 63.75 µs. For RST_TYPE_FLUSH, the reset bit is
* automatically cleared by hardware when flush completes.
*
* Although this driver does not configure the reset time registers, delays have
* been added to the assert, deassert, and reset operations to cover the maximum
* reset time. Some reset types include done bits whose toggle does not
* unambiguously signal whether hardware reset removal or clock-stop period
* expiration occurred first. Delays are therefore retained for types with done
* bits to ensure safe timing.
*
* Reference: K230 Technical Reference Manual V0.3.1
* https://kendryte-download.canaan-creative.com/developer/k230/HDK/K230%E7%A1%AC%E4%BB%B6%E6%96%87%E6%A1%A3/K230_Technical_Reference_Manual_V0.3.1_20241118.pdf
*/
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset-controller.h>
#include <linux/spinlock.h>
#include <dt-bindings/reset/canaan,k230-rst.h>
/**
* enum k230_rst_type - K230 reset types
* @RST_TYPE_CPU0: Reset type for CPU0
* Automatically clears, has write enable and done bit, active high
* @RST_TYPE_CPU1: Reset type for CPU1
* Manually clears, has write enable and done bit, active high
* @RST_TYPE_FLUSH: Reset type for CPU L2 cache flush
* Automatically clears, has write enable, no done bit, active high
* @RST_TYPE_HW_DONE: Reset type for hardware auto clear
* Automatically clears, no write enable, has done bit, active high
* @RST_TYPE_SW_DONE: Reset type for software manual clear
* Manually clears, no write enable and done bit,
* active high if ID is RST_SPI2AXI, otherwise active low
*/
enum k230_rst_type {
RST_TYPE_CPU0,
RST_TYPE_CPU1,
RST_TYPE_FLUSH,
RST_TYPE_HW_DONE,
RST_TYPE_SW_DONE,
};
struct k230_rst_map {
u32 offset;
enum k230_rst_type type;
u32 done;
u32 reset;
};
struct k230_rst {
struct reset_controller_dev rcdev;
void __iomem *base;
/* protect register read-modify-write */
spinlock_t lock;
};
static const struct k230_rst_map k230_resets[] = {
[RST_CPU0] = { 0x4, RST_TYPE_CPU0, BIT(12), BIT(0) },
[RST_CPU1] = { 0xc, RST_TYPE_CPU1, BIT(12), BIT(0) },
[RST_CPU0_FLUSH] = { 0x4, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_CPU1_FLUSH] = { 0xc, RST_TYPE_FLUSH, 0, BIT(4) },
[RST_AI] = { 0x14, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_VPU] = { 0x1c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_HISYS] = { 0x2c, RST_TYPE_HW_DONE, BIT(4), BIT(0) },
[RST_HISYS_AHB] = { 0x2c, RST_TYPE_HW_DONE, BIT(5), BIT(1) },
[RST_SDIO0] = { 0x34, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDIO1] = { 0x34, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SDIO_AXI] = { 0x34, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_USB0] = { 0x3c, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_USB1] = { 0x3c, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_USB0_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(30), BIT(0) },
[RST_USB1_AHB] = { 0x3c, RST_TYPE_HW_DONE, BIT(31), BIT(1) },
[RST_SPI0] = { 0x44, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SPI1] = { 0x44, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_SPI2] = { 0x44, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SEC] = { 0x4c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_PDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SDMA] = { 0x54, RST_TYPE_HW_DONE, BIT(29), BIT(1) },
[RST_DECOMPRESS] = { 0x5c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_SRAM] = { 0x64, RST_TYPE_HW_DONE, BIT(28), BIT(0) },
[RST_SHRM_AXIM] = { 0x64, RST_TYPE_HW_DONE, BIT(30), BIT(2) },
[RST_SHRM_AXIS] = { 0x64, RST_TYPE_HW_DONE, BIT(31), BIT(3) },
[RST_NONAI2D] = { 0x6c, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_MCTL] = { 0x74, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_ISP] = { 0x80, RST_TYPE_HW_DONE, BIT(29), BIT(6) },
[RST_ISP_DW] = { 0x80, RST_TYPE_HW_DONE, BIT(28), BIT(5) },
[RST_DPU] = { 0x88, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_DISP] = { 0x90, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_GPU] = { 0x98, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_AUDIO] = { 0xa4, RST_TYPE_HW_DONE, BIT(31), BIT(0) },
[RST_TIMER0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_TIMER1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_TIMER2] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_TIMER3] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_TIMER4] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_TIMER5] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_TIMER_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_HDI] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_WDT0] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_WDT1] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_WDT0_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_WDT1_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(15) },
[RST_TS_APB] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(16) },
[RST_MAILBOX] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_STC] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_PMU] = { 0x20, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_LOSYS_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_UART0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_UART1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_UART2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_UART3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_UART4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(5) },
[RST_I2C0] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(6) },
[RST_I2C1] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_I2C2] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_I2C3] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_I2C4] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(10) },
[RST_JAMLINK0_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(11) },
[RST_JAMLINK1_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(12) },
[RST_JAMLINK2_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(13) },
[RST_JAMLINK3_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(14) },
[RST_CODEC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(17) },
[RST_GPIO_DB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(18) },
[RST_GPIO_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(19) },
[RST_ADC] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(20) },
[RST_ADC_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(21) },
[RST_PWM_APB] = { 0x24, RST_TYPE_SW_DONE, 0, BIT(22) },
[RST_SHRM_APB] = { 0x64, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(0) },
[RST_CSI1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(1) },
[RST_CSI2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(2) },
[RST_CSI_DPHY] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(3) },
[RST_ISP_AHB] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(4) },
[RST_M0] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(7) },
[RST_M1] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(8) },
[RST_M2] = { 0x80, RST_TYPE_SW_DONE, 0, BIT(9) },
[RST_SPI2AXI] = { 0xa8, RST_TYPE_SW_DONE, 0, BIT(0) }
};
static inline struct k230_rst *to_k230_rst(struct reset_controller_dev *rcdev)
{
return container_of(rcdev, struct k230_rst, rcdev);
}
static void k230_rst_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
reg |= rmap->done; /* write 1 to clear */
if (write_en)
reg |= rmap->done << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_wait_and_clear_done(struct k230_rst *rstc, unsigned long id,
bool write_en)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret;
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
reg & rmap->done, 10, 1000);
if (ret) {
dev_err(rstc->rcdev.dev, "Wait for reset done timeout\n");
return ret;
}
k230_rst_clear_done(rstc, id, write_en);
return 0;
}
static void k230_rst_update(struct k230_rst *rstc, unsigned long id,
bool assert, bool write_en, bool active_low)
{
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
guard(spinlock_irqsave)(&rstc->lock);
reg = readl(rstc->base + rmap->offset);
if (assert ^ active_low)
reg |= rmap->reset;
else
reg &= ~rmap->reset;
if (write_en)
reg |= rmap->reset << 16;
writel(reg, rstc->base + rmap->offset);
}
static int k230_rst_assert(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, true, true, false);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, true, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is applied but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return 0;
}
static int k230_rst_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
int ret = 0;
switch (k230_resets[id].type) {
case RST_TYPE_CPU1:
k230_rst_update(rstc, id, false, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
break;
case RST_TYPE_SW_DONE:
k230_rst_update(rstc, id, false, false,
id == RST_SPI2AXI ? false : true);
break;
case RST_TYPE_CPU0:
case RST_TYPE_FLUSH:
case RST_TYPE_HW_DONE:
return -EOPNOTSUPP;
}
/*
* The time period when reset is removed but the clock is stopped for
* RST_TYPE_CPU1 and RST_TYPE_SW_DONE can be set up to 3.75us. Delay
* 10us to ensure proper reset timing.
*/
udelay(10);
return ret;
}
static int k230_rst_reset(struct reset_controller_dev *rcdev, unsigned long id)
{
struct k230_rst *rstc = to_k230_rst(rcdev);
const struct k230_rst_map *rmap = &k230_resets[id];
u32 reg;
int ret = 0;
switch (rmap->type) {
case RST_TYPE_CPU0:
k230_rst_clear_done(rstc, id, true);
k230_rst_update(rstc, id, true, true, false);
ret = k230_rst_wait_and_clear_done(rstc, id, true);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_CPU0 can be set up to 7.5us.
* Delay 10us to ensure proper reset timing.
*/
udelay(10);
break;
case RST_TYPE_FLUSH:
k230_rst_update(rstc, id, true, true, false);
/* Wait flush request bit auto cleared by hardware */
ret = readl_poll_timeout(rstc->base + rmap->offset, reg,
!(reg & rmap->reset), 10, 1000);
if (ret)
dev_err(rcdev->dev, "Wait for flush done timeout\n");
break;
case RST_TYPE_HW_DONE:
k230_rst_clear_done(rstc, id, false);
k230_rst_update(rstc, id, true, false, false);
ret = k230_rst_wait_and_clear_done(rstc, id, false);
/*
* The time period when reset is applied and removed but the
* clock is stopped for RST_TYPE_HW_DONE can be set up to
* 127.5us. Delay 200us to ensure proper reset timing.
*/
fsleep(200);
break;
case RST_TYPE_CPU1:
case RST_TYPE_SW_DONE:
k230_rst_assert(rcdev, id);
ret = k230_rst_deassert(rcdev, id);
break;
}
return ret;
}
static const struct reset_control_ops k230_rst_ops = {
.reset = k230_rst_reset,
.assert = k230_rst_assert,
.deassert = k230_rst_deassert,
};
static int k230_rst_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct k230_rst *rstc;
rstc = devm_kzalloc(dev, sizeof(*rstc), GFP_KERNEL);
if (!rstc)
return -ENOMEM;
rstc->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(rstc->base))
return PTR_ERR(rstc->base);
spin_lock_init(&rstc->lock);
rstc->rcdev.dev = dev;
rstc->rcdev.owner = THIS_MODULE;
rstc->rcdev.ops = &k230_rst_ops;
rstc->rcdev.nr_resets = ARRAY_SIZE(k230_resets);
rstc->rcdev.of_node = dev->of_node;
return devm_reset_controller_register(dev, &rstc->rcdev);
}
static const struct of_device_id k230_rst_match[] = {
{ .compatible = "canaan,k230-rst", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, k230_rst_match);
static struct platform_driver k230_rst_driver = {
.probe = k230_rst_probe,
.driver = {
.name = "k230-rst",
.of_match_table = k230_rst_match,
}
};
module_platform_driver(k230_rst_driver);
MODULE_AUTHOR("Junhui Liu <junhui.liu@pigmoral.tech>");
MODULE_DESCRIPTION("Canaan K230 reset driver");
MODULE_LICENSE("GPL");
|