1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2025 Google LLC
*/
#include <crypto/sha2.h>
#include "sha256-testvecs.h"
/* Generate the HASH_KUNIT_CASES using hash-test-template.h. */
#define HASH sha256
#define HASH_CTX sha256_ctx
#define HASH_SIZE SHA256_DIGEST_SIZE
#define HASH_INIT sha256_init
#define HASH_UPDATE sha256_update
#define HASH_FINAL sha256_final
#define HMAC_KEY hmac_sha256_key
#define HMAC_CTX hmac_sha256_ctx
#define HMAC_PREPAREKEY hmac_sha256_preparekey
#define HMAC_INIT hmac_sha256_init
#define HMAC_UPDATE hmac_sha256_update
#define HMAC_FINAL hmac_sha256_final
#define HMAC hmac_sha256
#define HMAC_USINGRAWKEY hmac_sha256_usingrawkey
#include "hash-test-template.h"
static void free_guarded_buf(void *buf)
{
vfree(buf);
}
/*
* Allocate a KUnit-managed buffer that has length @len bytes immediately
* followed by an unmapped page, and assert that the allocation succeeds.
*/
static void *alloc_guarded_buf(struct kunit *test, size_t len)
{
size_t full_len = round_up(len, PAGE_SIZE);
void *buf = vmalloc(full_len);
KUNIT_ASSERT_NOT_NULL(test, buf);
KUNIT_ASSERT_EQ(test, 0,
kunit_add_action_or_reset(test, free_guarded_buf, buf));
return buf + full_len - len;
}
/*
* Test for sha256_finup_2x(). Specifically, choose various data lengths and
* salt lengths, and for each one, verify that sha256_finup_2x() produces the
* same results as sha256_update() and sha256_final().
*
* Use guarded buffers for all inputs and outputs to reliably detect any
* out-of-bounds reads or writes, even if they occur in assembly code.
*/
static void test_sha256_finup_2x(struct kunit *test)
{
const size_t max_data_len = 16384;
u8 *data1_buf, *data2_buf, *hash1, *hash2;
u8 expected_hash1[SHA256_DIGEST_SIZE];
u8 expected_hash2[SHA256_DIGEST_SIZE];
u8 salt[SHA256_BLOCK_SIZE];
struct sha256_ctx *ctx;
data1_buf = alloc_guarded_buf(test, max_data_len);
data2_buf = alloc_guarded_buf(test, max_data_len);
hash1 = alloc_guarded_buf(test, SHA256_DIGEST_SIZE);
hash2 = alloc_guarded_buf(test, SHA256_DIGEST_SIZE);
ctx = alloc_guarded_buf(test, sizeof(*ctx));
rand_bytes(data1_buf, max_data_len);
rand_bytes(data2_buf, max_data_len);
rand_bytes(salt, sizeof(salt));
memset(ctx, 0, sizeof(*ctx));
for (size_t i = 0; i < 500; i++) {
size_t salt_len = rand_length(sizeof(salt));
size_t data_len = rand_length(max_data_len);
const u8 *data1 = data1_buf + max_data_len - data_len;
const u8 *data2 = data2_buf + max_data_len - data_len;
struct sha256_ctx orig_ctx;
sha256_init(ctx);
sha256_update(ctx, salt, salt_len);
orig_ctx = *ctx;
sha256_finup_2x(ctx, data1, data2, data_len, hash1, hash2);
KUNIT_ASSERT_MEMEQ_MSG(
test, ctx, &orig_ctx, sizeof(*ctx),
"sha256_finup_2x() modified its ctx argument");
sha256_update(ctx, data1, data_len);
sha256_final(ctx, expected_hash1);
sha256_update(&orig_ctx, data2, data_len);
sha256_final(&orig_ctx, expected_hash2);
KUNIT_ASSERT_MEMEQ_MSG(
test, hash1, expected_hash1, SHA256_DIGEST_SIZE,
"Wrong hash1 with salt_len=%zu data_len=%zu", salt_len,
data_len);
KUNIT_ASSERT_MEMEQ_MSG(
test, hash2, expected_hash2, SHA256_DIGEST_SIZE,
"Wrong hash2 with salt_len=%zu data_len=%zu", salt_len,
data_len);
}
}
/* Test sha256_finup_2x() with ctx == NULL */
static void test_sha256_finup_2x_defaultctx(struct kunit *test)
{
const size_t data_len = 128;
struct sha256_ctx ctx;
u8 hash1_a[SHA256_DIGEST_SIZE];
u8 hash2_a[SHA256_DIGEST_SIZE];
u8 hash1_b[SHA256_DIGEST_SIZE];
u8 hash2_b[SHA256_DIGEST_SIZE];
rand_bytes(test_buf, 2 * data_len);
sha256_init(&ctx);
sha256_finup_2x(&ctx, test_buf, &test_buf[data_len], data_len, hash1_a,
hash2_a);
sha256_finup_2x(NULL, test_buf, &test_buf[data_len], data_len, hash1_b,
hash2_b);
KUNIT_ASSERT_MEMEQ(test, hash1_a, hash1_b, SHA256_DIGEST_SIZE);
KUNIT_ASSERT_MEMEQ(test, hash2_a, hash2_b, SHA256_DIGEST_SIZE);
}
/*
* Test that sha256_finup_2x() and sha256_update/final() produce consistent
* results with total message lengths that require more than 32 bits.
*/
static void test_sha256_finup_2x_hugelen(struct kunit *test)
{
const size_t data_len = 4 * SHA256_BLOCK_SIZE;
struct sha256_ctx ctx = {};
u8 expected_hash[SHA256_DIGEST_SIZE];
u8 hash[SHA256_DIGEST_SIZE];
rand_bytes(test_buf, data_len);
for (size_t align = 0; align < SHA256_BLOCK_SIZE; align++) {
sha256_init(&ctx);
ctx.ctx.bytecount = 0x123456789abcd00 + align;
sha256_finup_2x(&ctx, test_buf, test_buf, data_len, hash, hash);
sha256_update(&ctx, test_buf, data_len);
sha256_final(&ctx, expected_hash);
KUNIT_ASSERT_MEMEQ(test, hash, expected_hash,
SHA256_DIGEST_SIZE);
}
}
/* Benchmark for sha256_finup_2x() */
static void benchmark_sha256_finup_2x(struct kunit *test)
{
/*
* Try a few different salt lengths, since sha256_finup_2x() performance
* may vary slightly for the same data_len depending on how many bytes
* were already processed in the initial context.
*/
static const size_t salt_lens_to_test[] = { 0, 32, 64 };
const size_t data_len = 4096;
const size_t num_iters = 4096;
struct sha256_ctx ctx;
u8 hash1[SHA256_DIGEST_SIZE];
u8 hash2[SHA256_DIGEST_SIZE];
if (!IS_ENABLED(CONFIG_CRYPTO_LIB_BENCHMARK))
kunit_skip(test, "not enabled");
if (!sha256_finup_2x_is_optimized())
kunit_skip(test, "not relevant");
rand_bytes(test_buf, data_len * 2);
/* Warm-up */
for (size_t i = 0; i < num_iters; i++)
sha256_finup_2x(NULL, &test_buf[0], &test_buf[data_len],
data_len, hash1, hash2);
for (size_t i = 0; i < ARRAY_SIZE(salt_lens_to_test); i++) {
size_t salt_len = salt_lens_to_test[i];
u64 t0, t1;
/*
* Prepare the initial context. The time to process the salt is
* not measured; we're just interested in sha256_finup_2x().
*/
sha256_init(&ctx);
sha256_update(&ctx, test_buf, salt_len);
preempt_disable();
t0 = ktime_get_ns();
for (size_t j = 0; j < num_iters; j++)
sha256_finup_2x(&ctx, &test_buf[0], &test_buf[data_len],
data_len, hash1, hash2);
t1 = ktime_get_ns();
preempt_enable();
kunit_info(test, "data_len=%zu salt_len=%zu: %llu MB/s",
data_len, salt_len,
div64_u64((u64)data_len * 2 * num_iters * 1000,
t1 - t0 ?: 1));
}
}
static struct kunit_case hash_test_cases[] = {
HASH_KUNIT_CASES,
KUNIT_CASE(test_sha256_finup_2x),
KUNIT_CASE(test_sha256_finup_2x_defaultctx),
KUNIT_CASE(test_sha256_finup_2x_hugelen),
KUNIT_CASE(benchmark_hash),
KUNIT_CASE(benchmark_sha256_finup_2x),
{},
};
static struct kunit_suite hash_test_suite = {
.name = "sha256",
.test_cases = hash_test_cases,
.suite_init = hash_suite_init,
.suite_exit = hash_suite_exit,
};
kunit_test_suite(hash_test_suite);
MODULE_DESCRIPTION("KUnit tests and benchmark for SHA-256 and HMAC-SHA256");
MODULE_LICENSE("GPL");
|