1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* LoongArch KGDB support
*
* Copyright (C) 2023 Loongson Technology Corporation Limited
*/
#include <linux/hw_breakpoint.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/objtool.h>
#include <linux/processor.h>
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/cacheflush.h>
#include <asm/fpu.h>
#include <asm/hw_breakpoint.h>
#include <asm/inst.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>
#include <asm/sigcontext.h>
int kgdb_watch_activated;
static unsigned int stepped_opcode;
static unsigned long stepped_address;
struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = {
{ "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) },
{ "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) },
{ "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) },
{ "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) },
{ "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) },
{ "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) },
{ "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) },
{ "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) },
{ "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) },
{ "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) },
{ "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) },
{ "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) },
{ "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) },
{ "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) },
{ "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) },
{ "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) },
{ "r16", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[16]) },
{ "r17", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[17]) },
{ "r18", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[18]) },
{ "r19", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[19]) },
{ "r20", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[20]) },
{ "r21", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[21]) },
{ "r22", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[22]) },
{ "r23", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[23]) },
{ "r24", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[24]) },
{ "r25", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[25]) },
{ "r26", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[26]) },
{ "r27", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[27]) },
{ "r28", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[28]) },
{ "r29", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[29]) },
{ "r30", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[30]) },
{ "r31", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[31]) },
{ "orig_a0", GDB_SIZEOF_REG, offsetof(struct pt_regs, orig_a0) },
{ "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_era) },
{ "badv", GDB_SIZEOF_REG, offsetof(struct pt_regs, csr_badvaddr) },
{ "f0", GDB_SIZEOF_REG, 0 },
{ "f1", GDB_SIZEOF_REG, 1 },
{ "f2", GDB_SIZEOF_REG, 2 },
{ "f3", GDB_SIZEOF_REG, 3 },
{ "f4", GDB_SIZEOF_REG, 4 },
{ "f5", GDB_SIZEOF_REG, 5 },
{ "f6", GDB_SIZEOF_REG, 6 },
{ "f7", GDB_SIZEOF_REG, 7 },
{ "f8", GDB_SIZEOF_REG, 8 },
{ "f9", GDB_SIZEOF_REG, 9 },
{ "f10", GDB_SIZEOF_REG, 10 },
{ "f11", GDB_SIZEOF_REG, 11 },
{ "f12", GDB_SIZEOF_REG, 12 },
{ "f13", GDB_SIZEOF_REG, 13 },
{ "f14", GDB_SIZEOF_REG, 14 },
{ "f15", GDB_SIZEOF_REG, 15 },
{ "f16", GDB_SIZEOF_REG, 16 },
{ "f17", GDB_SIZEOF_REG, 17 },
{ "f18", GDB_SIZEOF_REG, 18 },
{ "f19", GDB_SIZEOF_REG, 19 },
{ "f20", GDB_SIZEOF_REG, 20 },
{ "f21", GDB_SIZEOF_REG, 21 },
{ "f22", GDB_SIZEOF_REG, 22 },
{ "f23", GDB_SIZEOF_REG, 23 },
{ "f24", GDB_SIZEOF_REG, 24 },
{ "f25", GDB_SIZEOF_REG, 25 },
{ "f26", GDB_SIZEOF_REG, 26 },
{ "f27", GDB_SIZEOF_REG, 27 },
{ "f28", GDB_SIZEOF_REG, 28 },
{ "f29", GDB_SIZEOF_REG, 29 },
{ "f30", GDB_SIZEOF_REG, 30 },
{ "f31", GDB_SIZEOF_REG, 31 },
{ "fcc0", 1, 0 },
{ "fcc1", 1, 1 },
{ "fcc2", 1, 2 },
{ "fcc3", 1, 3 },
{ "fcc4", 1, 4 },
{ "fcc5", 1, 5 },
{ "fcc6", 1, 6 },
{ "fcc7", 1, 7 },
{ "fcsr", 4, 0 },
};
char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return NULL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
goto out;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy(mem, (void *)regs + reg_offset, reg_size);
goto out;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
goto out;
save_fp(current);
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy(mem, (void *)¤t->thread.fpu.fcsr, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy(mem, (void *)¤t->thread.fpu.fcc + reg_offset, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy(mem, (void *)¤t->thread.fpu.fpr[reg_offset], reg_size);
break;
default:
break;
}
out:
return dbg_reg_def[regno].name;
}
int dbg_set_reg(int regno, void *mem, struct pt_regs *regs)
{
int reg_offset, reg_size;
if (regno < 0 || regno >= DBG_MAX_REG_NUM)
return -EINVAL;
reg_offset = dbg_reg_def[regno].offset;
reg_size = dbg_reg_def[regno].size;
if (reg_offset == -1)
return 0;
/* Handle general-purpose/orig_a0/pc/badv registers */
if (regno <= DBG_PT_REGS_END) {
memcpy((void *)regs + reg_offset, mem, reg_size);
return 0;
}
if (!(regs->csr_euen & CSR_EUEN_FPEN))
return 0;
/* Handle FP registers */
switch (regno) {
case DBG_FCSR: /* Process the fcsr */
memcpy((void *)¤t->thread.fpu.fcsr, mem, reg_size);
break;
case DBG_FCC_BASE ... DBG_FCC_END: /* Process the fcc */
memcpy((void *)¤t->thread.fpu.fcc + reg_offset, mem, reg_size);
break;
case DBG_FPR_BASE ... DBG_FPR_END: /* Process the fpr */
memcpy((void *)¤t->thread.fpu.fpr[reg_offset], mem, reg_size);
break;
default:
break;
}
restore_fp(current);
return 0;
}
/*
* Similar to regs_to_gdb_regs() except that process is sleeping and so
* we may not be able to get all the info.
*/
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
{
/* Initialize to zero */
memset((char *)gdb_regs, 0, NUMREGBYTES);
gdb_regs[DBG_LOONGARCH_RA] = p->thread.reg01;
gdb_regs[DBG_LOONGARCH_TP] = (long)p;
gdb_regs[DBG_LOONGARCH_SP] = p->thread.reg03;
/* S0 - S8 */
gdb_regs[DBG_LOONGARCH_S0] = p->thread.reg23;
gdb_regs[DBG_LOONGARCH_S1] = p->thread.reg24;
gdb_regs[DBG_LOONGARCH_S2] = p->thread.reg25;
gdb_regs[DBG_LOONGARCH_S3] = p->thread.reg26;
gdb_regs[DBG_LOONGARCH_S4] = p->thread.reg27;
gdb_regs[DBG_LOONGARCH_S5] = p->thread.reg28;
gdb_regs[DBG_LOONGARCH_S6] = p->thread.reg29;
gdb_regs[DBG_LOONGARCH_S7] = p->thread.reg30;
gdb_regs[DBG_LOONGARCH_S8] = p->thread.reg31;
/*
* PC use return address (RA), i.e. the moment after return from __switch_to()
*/
gdb_regs[DBG_LOONGARCH_PC] = p->thread.reg01;
}
void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long pc)
{
regs->csr_era = pc;
}
noinline void arch_kgdb_breakpoint(void)
{
__asm__ __volatile__ ( \
".globl kgdb_breakinst\n\t" \
"kgdb_breakinst:\tbreak 2\n\t"); /* BRK_KDB = 2 */
}
STACK_FRAME_NON_STANDARD(arch_kgdb_breakpoint);
/*
* Calls linux_debug_hook before the kernel dies. If KGDB is enabled,
* then try to fall into the debugger
*/
static int kgdb_loongarch_notify(struct notifier_block *self, unsigned long cmd, void *ptr)
{
struct die_args *args = (struct die_args *)ptr;
struct pt_regs *regs = args->regs;
/* Userspace events, ignore. */
if (user_mode(regs))
return NOTIFY_DONE;
if (!kgdb_io_module_registered)
return NOTIFY_DONE;
if (atomic_read(&kgdb_active) != -1)
kgdb_nmicallback(smp_processor_id(), regs);
if (kgdb_handle_exception(args->trapnr, args->signr, cmd, regs))
return NOTIFY_DONE;
if (atomic_read(&kgdb_setting_breakpoint))
if (regs->csr_era == (unsigned long)&kgdb_breakinst)
regs->csr_era += LOONGARCH_INSN_SIZE;
return NOTIFY_STOP;
}
bool kgdb_breakpoint_handler(struct pt_regs *regs)
{
struct die_args args = {
.regs = regs,
.str = "Break",
.err = BRK_KDB,
.trapnr = read_csr_excode(),
.signr = SIGTRAP,
};
return (kgdb_loongarch_notify(NULL, DIE_TRAP, &args) == NOTIFY_STOP) ? true : false;
}
static struct notifier_block kgdb_notifier = {
.notifier_call = kgdb_loongarch_notify,
};
static inline void kgdb_arch_update_addr(struct pt_regs *regs,
char *remcom_in_buffer)
{
unsigned long addr;
char *ptr;
ptr = &remcom_in_buffer[1];
if (kgdb_hex2long(&ptr, &addr))
regs->csr_era = addr;
}
/* Calculate the new address for after a step */
static int get_step_address(struct pt_regs *regs, unsigned long *next_addr)
{
char cj_val;
unsigned int si, si_l, si_h, rd, rj, cj;
unsigned long pc = instruction_pointer(regs);
union loongarch_instruction *ip = (union loongarch_instruction *)pc;
if (pc & 3) {
pr_warn("%s: invalid pc 0x%lx\n", __func__, pc);
return -EINVAL;
}
*next_addr = pc + LOONGARCH_INSN_SIZE;
si_h = ip->reg0i26_format.immediate_h;
si_l = ip->reg0i26_format.immediate_l;
switch (ip->reg0i26_format.opcode) {
case b_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
return 0;
case bl_op:
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 27);
regs->regs[1] = pc + LOONGARCH_INSN_SIZE;
return 0;
}
rj = ip->reg1i21_format.rj;
cj = (rj & 0x07) + DBG_FCC_BASE;
si_l = ip->reg1i21_format.immediate_l;
si_h = ip->reg1i21_format.immediate_h;
dbg_get_reg(cj, &cj_val, regs);
switch (ip->reg1i21_format.opcode) {
case beqz_op:
if (regs->regs[rj] == 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bnez_op:
if (regs->regs[rj] != 0)
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
case bceqz_op: /* bceqz_op = bcnez_op */
if (((rj & 0x18) == 0x00) && !cj_val) /* bceqz */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
if (((rj & 0x18) == 0x08) && cj_val) /* bcnez */
*next_addr = pc + sign_extend64((si_h << 16 | si_l) << 2, 22);
return 0;
}
rj = ip->reg2i16_format.rj;
rd = ip->reg2i16_format.rd;
si = ip->reg2i16_format.immediate;
switch (ip->reg2i16_format.opcode) {
case beq_op:
if (regs->regs[rj] == regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bne_op:
if (regs->regs[rj] != regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case blt_op:
if ((long)regs->regs[rj] < (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bge_op:
if ((long)regs->regs[rj] >= (long)regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bltu_op:
if (regs->regs[rj] < regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case bgeu_op:
if (regs->regs[rj] >= regs->regs[rd])
*next_addr = pc + sign_extend64(si << 2, 17);
return 0;
case jirl_op:
regs->regs[rd] = pc + LOONGARCH_INSN_SIZE;
*next_addr = regs->regs[rj] + sign_extend64(si << 2, 17);
return 0;
}
return 0;
}
static int do_single_step(struct pt_regs *regs)
{
int error = 0;
unsigned long addr = 0; /* Determine where the target instruction will send us to */
error = get_step_address(regs, &addr);
if (error)
return error;
/* Store the opcode in the stepped address */
error = get_kernel_nofault(stepped_opcode, (void *)addr);
if (error)
return error;
stepped_address = addr;
/* Replace the opcode with the break instruction */
error = copy_to_kernel_nofault((void *)stepped_address,
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
if (error) {
stepped_opcode = 0;
stepped_address = 0;
} else {
kgdb_single_step = 1;
atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id());
}
return error;
}
/* Undo a single step */
static void undo_single_step(struct pt_regs *regs)
{
if (stepped_opcode) {
copy_to_kernel_nofault((void *)stepped_address,
(void *)&stepped_opcode, BREAK_INSTR_SIZE);
flush_icache_range(stepped_address, stepped_address + BREAK_INSTR_SIZE);
}
stepped_opcode = 0;
stepped_address = 0;
kgdb_single_step = 0;
atomic_set(&kgdb_cpu_doing_single_step, -1);
}
int kgdb_arch_handle_exception(int vector, int signo, int err_code,
char *remcom_in_buffer, char *remcom_out_buffer,
struct pt_regs *regs)
{
int ret = 0;
undo_single_step(regs);
regs->csr_prmd |= CSR_PRMD_PWE;
switch (remcom_in_buffer[0]) {
case 'D':
case 'k':
regs->csr_prmd &= ~CSR_PRMD_PWE;
fallthrough;
case 'c':
kgdb_arch_update_addr(regs, remcom_in_buffer);
break;
case 's':
kgdb_arch_update_addr(regs, remcom_in_buffer);
ret = do_single_step(regs);
break;
default:
ret = -1;
}
return ret;
}
static struct hw_breakpoint {
unsigned int enabled;
unsigned long addr;
int len;
int type;
struct perf_event * __percpu *pev;
} breakinfo[LOONGARCH_MAX_BRP];
static int hw_break_reserve_slot(int breakno)
{
int cpu, cnt = 0;
struct perf_event **pevent;
for_each_online_cpu(cpu) {
cnt++;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_reserve_bp_slot(*pevent))
goto fail;
}
return 0;
fail:
for_each_online_cpu(cpu) {
cnt--;
if (!cnt)
break;
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
dbg_release_bp_slot(*pevent);
}
return -1;
}
static int hw_break_release_slot(int breakno)
{
int cpu;
struct perf_event **pevent;
if (dbg_is_early)
return 0;
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[breakno].pev, cpu);
if (dbg_release_bp_slot(*pevent))
/*
* The debugger is responsible for handing the retry on
* remove failure.
*/
return -1;
}
return 0;
}
static int kgdb_set_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (!breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
switch (bptype) {
case BP_HARDWARE_BREAKPOINT:
breakinfo[i].type = HW_BREAKPOINT_X;
break;
case BP_READ_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_R;
break;
case BP_WRITE_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_W;
break;
case BP_ACCESS_WATCHPOINT:
breakinfo[i].type = HW_BREAKPOINT_RW;
break;
default:
return -1;
}
switch (len) {
case 1:
breakinfo[i].len = HW_BREAKPOINT_LEN_1;
break;
case 2:
breakinfo[i].len = HW_BREAKPOINT_LEN_2;
break;
case 4:
breakinfo[i].len = HW_BREAKPOINT_LEN_4;
break;
case 8:
breakinfo[i].len = HW_BREAKPOINT_LEN_8;
break;
default:
return -1;
}
breakinfo[i].addr = addr;
if (hw_break_reserve_slot(i)) {
breakinfo[i].addr = 0;
return -1;
}
breakinfo[i].enabled = 1;
return 0;
}
static int kgdb_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype bptype)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++)
if (breakinfo[i].addr == addr && breakinfo[i].enabled)
break;
if (i == LOONGARCH_MAX_BRP)
return -1;
if (hw_break_release_slot(i)) {
pr_err("Cannot remove hw breakpoint at %lx\n", addr);
return -1;
}
breakinfo[i].enabled = 0;
return 0;
}
static void kgdb_disable_hw_break(struct pt_regs *regs)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled == 1)
continue;
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
}
/* Disable hardware debugging while we are in kgdb */
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
}
static void kgdb_remove_all_hw_break(void)
{
int i;
int cpu = raw_smp_processor_id();
struct perf_event *bp;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (!bp->attr.disabled) {
arch_uninstall_hw_breakpoint(bp);
bp->attr.disabled = 1;
continue;
}
if (hw_break_release_slot(i))
pr_err("KGDB: hw bpt remove failed %lx\n", breakinfo[i].addr);
breakinfo[i].enabled = 0;
}
csr_xchg32(0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = 0;
}
static void kgdb_correct_hw_break(void)
{
int i, activated = 0;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
struct perf_event *bp;
int val;
int cpu = raw_smp_processor_id();
if (!breakinfo[i].enabled)
continue;
bp = *per_cpu_ptr(breakinfo[i].pev, cpu);
if (bp->attr.disabled != 1)
continue;
bp->attr.bp_addr = breakinfo[i].addr;
bp->attr.bp_len = breakinfo[i].len;
bp->attr.bp_type = breakinfo[i].type;
val = hw_breakpoint_arch_parse(bp, &bp->attr, counter_arch_bp(bp));
if (val)
return;
val = arch_install_hw_breakpoint(bp);
if (!val)
bp->attr.disabled = 0;
activated = 1;
}
csr_xchg32(activated ? CSR_CRMD_WE : 0, CSR_CRMD_WE, LOONGARCH_CSR_CRMD);
kgdb_watch_activated = activated;
}
const struct kgdb_arch arch_kgdb_ops = {
.gdb_bpt_instr = {0x02, 0x00, break_op >> 1, 0x00}, /* BRK_KDB = 2 */
.flags = KGDB_HW_BREAKPOINT,
.set_hw_breakpoint = kgdb_set_hw_break,
.remove_hw_breakpoint = kgdb_remove_hw_break,
.disable_hw_break = kgdb_disable_hw_break,
.remove_all_hw_break = kgdb_remove_all_hw_break,
.correct_hw_break = kgdb_correct_hw_break,
};
int kgdb_arch_init(void)
{
return register_die_notifier(&kgdb_notifier);
}
void kgdb_arch_late(void)
{
int i, cpu;
struct perf_event_attr attr;
struct perf_event **pevent;
hw_breakpoint_init(&attr);
attr.bp_addr = (unsigned long)kgdb_arch_init;
attr.bp_len = HW_BREAKPOINT_LEN_4;
attr.bp_type = HW_BREAKPOINT_W;
attr.disabled = 1;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev)
continue;
breakinfo[i].pev = register_wide_hw_breakpoint(&attr, NULL, NULL);
if (IS_ERR((void * __force)breakinfo[i].pev)) {
pr_err("kgdb: Could not allocate hw breakpoints.\n");
breakinfo[i].pev = NULL;
return;
}
for_each_online_cpu(cpu) {
pevent = per_cpu_ptr(breakinfo[i].pev, cpu);
if (pevent[0]->destroy) {
pevent[0]->destroy = NULL;
release_bp_slot(*pevent);
}
}
}
}
void kgdb_arch_exit(void)
{
int i;
for (i = 0; i < LOONGARCH_MAX_BRP; i++) {
if (breakinfo[i].pev) {
unregister_wide_hw_breakpoint(breakinfo[i].pev);
breakinfo[i].pev = NULL;
}
}
unregister_die_notifier(&kgdb_notifier);
}
|