1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Benjamin Berg <benjamin@sipsolutions.net>
* Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
* Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <stdlib.h>
#include <stdbool.h>
#include <unistd.h>
#include <sched.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <mem_user.h>
#include <sys/mman.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <asm/unistd.h>
#include <as-layout.h>
#include <init.h>
#include <kern_util.h>
#include <mem.h>
#include <os.h>
#include <ptrace_user.h>
#include <registers.h>
#include <skas.h>
#include <sysdep/stub.h>
#include <sysdep/mcontext.h>
#include <linux/futex.h>
#include <linux/threads.h>
#include <timetravel.h>
#include <asm-generic/rwonce.h>
#include "../internal.h"
int is_skas_winch(int pid, int fd, void *data)
{
return pid == getpgrp();
}
static const char *ptrace_reg_name(int idx)
{
#define R(n) case HOST_##n: return #n
switch (idx) {
#ifdef __x86_64__
R(BX);
R(CX);
R(DI);
R(SI);
R(DX);
R(BP);
R(AX);
R(R8);
R(R9);
R(R10);
R(R11);
R(R12);
R(R13);
R(R14);
R(R15);
R(ORIG_AX);
R(CS);
R(SS);
R(EFLAGS);
#elif defined(__i386__)
R(IP);
R(SP);
R(EFLAGS);
R(AX);
R(BX);
R(CX);
R(DX);
R(SI);
R(DI);
R(BP);
R(CS);
R(SS);
R(DS);
R(FS);
R(ES);
R(GS);
R(ORIG_AX);
#endif
}
return "";
}
static int ptrace_dump_regs(int pid)
{
unsigned long regs[MAX_REG_NR];
int i;
if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
return -errno;
printk(UM_KERN_ERR "Stub registers -\n");
for (i = 0; i < ARRAY_SIZE(regs); i++) {
const char *regname = ptrace_reg_name(i);
printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
}
return 0;
}
/*
* Signals that are OK to receive in the stub - we'll just continue it.
* SIGWINCH will happen when UML is inside a detached screen.
*/
#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
/* Signals that the stub will finish with - anything else is an error */
#define STUB_DONE_MASK (1 << SIGTRAP)
void wait_stub_done(int pid)
{
int n, status, err;
while (1) {
CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
if ((n < 0) || !WIFSTOPPED(status))
goto bad_wait;
if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
break;
err = ptrace(PTRACE_CONT, pid, 0, 0);
if (err) {
printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
}
if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
return;
bad_wait:
err = ptrace_dump_regs(pid);
if (err)
printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
-err);
printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
__func__, pid, n, errno, status);
fatal_sigsegv();
}
void wait_stub_done_seccomp(struct mm_id *mm_idp, int running, int wait_sigsys)
{
struct stub_data *data = (void *)mm_idp->stack;
int ret;
do {
const char byte = 0;
struct iovec iov = {
.iov_base = (void *)&byte,
.iov_len = sizeof(byte),
};
union {
char data[CMSG_SPACE(sizeof(mm_idp->syscall_fd_map))];
struct cmsghdr align;
} ctrl;
struct msghdr msgh = {
.msg_iov = &iov,
.msg_iovlen = 1,
};
if (!running) {
if (mm_idp->syscall_fd_num) {
unsigned int fds_size =
sizeof(int) * mm_idp->syscall_fd_num;
struct cmsghdr *cmsg;
msgh.msg_control = ctrl.data;
msgh.msg_controllen = CMSG_SPACE(fds_size);
cmsg = CMSG_FIRSTHDR(&msgh);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(fds_size);
memcpy(CMSG_DATA(cmsg), mm_idp->syscall_fd_map,
fds_size);
CATCH_EINTR(syscall(__NR_sendmsg, mm_idp->sock,
&msgh, 0));
}
data->signal = 0;
data->futex = FUTEX_IN_CHILD;
CATCH_EINTR(syscall(__NR_futex, &data->futex,
FUTEX_WAKE, 1, NULL, NULL, 0));
}
do {
/*
* We need to check whether the child is still alive
* before and after the FUTEX_WAIT call. Before, in
* case it just died but we still updated data->futex
* to FUTEX_IN_CHILD. And after, in case it died while
* we were waiting (and SIGCHLD woke us up, see the
* IRQ handler in mmu.c).
*
* Either way, if PID is negative, then we have no
* choice but to kill the task.
*/
if (__READ_ONCE(mm_idp->pid) < 0)
goto out_kill;
ret = syscall(__NR_futex, &data->futex,
FUTEX_WAIT, FUTEX_IN_CHILD,
NULL, NULL, 0);
if (ret < 0 && errno != EINTR && errno != EAGAIN) {
printk(UM_KERN_ERR "%s : FUTEX_WAIT failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
} while (data->futex == FUTEX_IN_CHILD);
if (__READ_ONCE(mm_idp->pid) < 0)
goto out_kill;
running = 0;
/* We may receive a SIGALRM before SIGSYS, iterate again. */
} while (wait_sigsys && data->signal == SIGALRM);
if (data->mctx_offset > sizeof(data->sigstack) - sizeof(mcontext_t)) {
printk(UM_KERN_ERR "%s : invalid mcontext offset", __func__);
goto out_kill;
}
if (wait_sigsys && data->signal != SIGSYS) {
printk(UM_KERN_ERR "%s : expected SIGSYS but got %d",
__func__, data->signal);
goto out_kill;
}
return;
out_kill:
printk(UM_KERN_ERR "%s : failed to wait for stub, pid = %d, errno = %d\n",
__func__, mm_idp->pid, errno);
/* This is not true inside start_userspace */
if (current_mm_id() == mm_idp)
fatal_sigsegv();
}
extern unsigned long current_stub_stack(void);
static void get_skas_faultinfo(int pid, struct faultinfo *fi)
{
int err;
err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
if (err) {
printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
"errno = %d\n", pid, errno);
fatal_sigsegv();
}
wait_stub_done(pid);
/*
* faultinfo is prepared by the stub_segv_handler at start of
* the stub stack page. We just have to copy it.
*/
memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
}
static void handle_trap(struct uml_pt_regs *regs)
{
if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
fatal_sigsegv();
handle_syscall(regs);
}
extern char __syscall_stub_start[];
static int stub_exe_fd;
struct tramp_data {
struct stub_data *stub_data;
/* 0 is inherited, 1 is the kernel side */
int sockpair[2];
};
#ifndef CLOSE_RANGE_CLOEXEC
#define CLOSE_RANGE_CLOEXEC (1U << 2)
#endif
static int userspace_tramp(void *data)
{
struct tramp_data *tramp_data = data;
char *const argv[] = { "uml-userspace", NULL };
unsigned long long offset;
struct stub_init_data init_data = {
.seccomp = using_seccomp,
.stub_start = STUB_START,
};
struct iomem_region *iomem;
int ret;
if (using_seccomp) {
init_data.signal_handler = STUB_CODE +
(unsigned long) stub_signal_interrupt -
(unsigned long) __syscall_stub_start;
init_data.signal_restorer = STUB_CODE +
(unsigned long) stub_signal_restorer -
(unsigned long) __syscall_stub_start;
} else {
init_data.signal_handler = STUB_CODE +
(unsigned long) stub_segv_handler -
(unsigned long) __syscall_stub_start;
init_data.signal_restorer = 0;
}
init_data.stub_code_fd = phys_mapping(uml_to_phys(__syscall_stub_start),
&offset);
init_data.stub_code_offset = MMAP_OFFSET(offset);
init_data.stub_data_fd = phys_mapping(uml_to_phys(tramp_data->stub_data),
&offset);
init_data.stub_data_offset = MMAP_OFFSET(offset);
/*
* Avoid leaking unneeded FDs to the stub by setting CLOEXEC on all FDs
* and then unsetting it on all memory related FDs.
* This is not strictly necessary from a safety perspective.
*/
syscall(__NR_close_range, 0, ~0U, CLOSE_RANGE_CLOEXEC);
fcntl(init_data.stub_data_fd, F_SETFD, 0);
/* In SECCOMP mode, these FDs are passed when needed */
if (!using_seccomp) {
for (iomem = iomem_regions; iomem; iomem = iomem->next)
fcntl(iomem->fd, F_SETFD, 0);
}
/* dup2 signaling FD/socket to STDIN */
if (dup2(tramp_data->sockpair[0], 0) < 0)
exit(3);
close(tramp_data->sockpair[0]);
/* Write init_data and close write side */
ret = write(tramp_data->sockpair[1], &init_data, sizeof(init_data));
close(tramp_data->sockpair[1]);
if (ret != sizeof(init_data))
exit(4);
/* Raw execveat for compatibility with older libc versions */
syscall(__NR_execveat, stub_exe_fd, (unsigned long)"",
(unsigned long)argv, NULL, AT_EMPTY_PATH);
exit(5);
}
extern char stub_exe_start[];
extern char stub_exe_end[];
extern char *tempdir;
#define STUB_EXE_NAME_TEMPLATE "/uml-userspace-XXXXXX"
#ifndef MFD_EXEC
#define MFD_EXEC 0x0010U
#endif
static int __init init_stub_exe_fd(void)
{
size_t written = 0;
char *tmpfile = NULL;
stub_exe_fd = memfd_create("uml-userspace",
MFD_EXEC | MFD_CLOEXEC | MFD_ALLOW_SEALING);
if (stub_exe_fd < 0) {
printk(UM_KERN_INFO "Could not create executable memfd, using temporary file!");
tmpfile = malloc(strlen(tempdir) +
strlen(STUB_EXE_NAME_TEMPLATE) + 1);
if (tmpfile == NULL)
panic("Failed to allocate memory for stub binary name");
strcpy(tmpfile, tempdir);
strcat(tmpfile, STUB_EXE_NAME_TEMPLATE);
stub_exe_fd = mkstemp(tmpfile);
if (stub_exe_fd < 0)
panic("Could not create temporary file for stub binary: %d",
-errno);
}
while (written < stub_exe_end - stub_exe_start) {
ssize_t res = write(stub_exe_fd, stub_exe_start + written,
stub_exe_end - stub_exe_start - written);
if (res < 0) {
if (errno == EINTR)
continue;
if (tmpfile)
unlink(tmpfile);
panic("Failed write stub binary: %d", -errno);
}
written += res;
}
if (!tmpfile) {
fcntl(stub_exe_fd, F_ADD_SEALS,
F_SEAL_WRITE | F_SEAL_SHRINK | F_SEAL_GROW | F_SEAL_SEAL);
} else {
if (fchmod(stub_exe_fd, 00500) < 0) {
unlink(tmpfile);
panic("Could not make stub binary executable: %d",
-errno);
}
close(stub_exe_fd);
stub_exe_fd = open(tmpfile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW);
if (stub_exe_fd < 0) {
unlink(tmpfile);
panic("Could not reopen stub binary: %d", -errno);
}
unlink(tmpfile);
free(tmpfile);
}
return 0;
}
__initcall(init_stub_exe_fd);
int using_seccomp;
/**
* start_userspace() - prepare a new userspace process
* @mm_id: The corresponding struct mm_id
*
* Setups a new temporary stack page that is used while userspace_tramp() runs
* Clones the kernel process into a new userspace process, with FDs only.
*
* Return: When positive: the process id of the new userspace process,
* when negative: an error number.
* FIXME: can PIDs become negative?!
*/
int start_userspace(struct mm_id *mm_id)
{
struct stub_data *proc_data = (void *)mm_id->stack;
struct tramp_data tramp_data = {
.stub_data = proc_data,
};
void *stack;
unsigned long sp;
int status, n, err;
/* setup a temporary stack page */
stack = mmap(NULL, UM_KERN_PAGE_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (stack == MAP_FAILED) {
err = -errno;
printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
__func__, errno);
return err;
}
/* set stack pointer to the end of the stack page, so it can grow downwards */
sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
/* socket pair for init data and SECCOMP FD passing (no CLOEXEC here) */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, tramp_data.sockpair)) {
err = -errno;
printk(UM_KERN_ERR "%s : socketpair failed, errno = %d\n",
__func__, errno);
return err;
}
if (using_seccomp)
proc_data->futex = FUTEX_IN_CHILD;
mm_id->pid = clone(userspace_tramp, (void *) sp,
CLONE_VFORK | CLONE_VM | SIGCHLD,
(void *)&tramp_data);
if (mm_id->pid < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
__func__, errno);
goto out_close;
}
if (using_seccomp) {
wait_stub_done_seccomp(mm_id, 1, 1);
} else {
do {
CATCH_EINTR(n = waitpid(mm_id->pid, &status,
WUNTRACED | __WALL));
if (n < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
err = -EINVAL;
printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
__func__, status);
goto out_kill;
}
if (ptrace(PTRACE_SETOPTIONS, mm_id->pid, NULL,
(void *) PTRACE_O_TRACESYSGOOD) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : PTRACE_SETOPTIONS failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
}
if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
err = -errno;
printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
__func__, errno);
goto out_kill;
}
close(tramp_data.sockpair[0]);
if (using_seccomp)
mm_id->sock = tramp_data.sockpair[1];
else
close(tramp_data.sockpair[1]);
return 0;
out_kill:
os_kill_ptraced_process(mm_id->pid, 1);
out_close:
close(tramp_data.sockpair[0]);
close(tramp_data.sockpair[1]);
mm_id->pid = -1;
return err;
}
static int unscheduled_userspace_iterations;
extern unsigned long tt_extra_sched_jiffies;
void userspace(struct uml_pt_regs *regs)
{
int err, status, op;
siginfo_t si_ptrace;
siginfo_t *si;
int sig;
/* Handle any immediate reschedules or signals */
interrupt_end();
while (1) {
struct mm_id *mm_id = current_mm_id();
/*
* When we are in time-travel mode, userspace can theoretically
* do a *lot* of work without being scheduled. The problem with
* this is that it will prevent kernel bookkeeping (primarily
* the RCU) from running and this can for example cause OOM
* situations.
*
* This code accounts a jiffie against the scheduling clock
* after the defined userspace iterations in the same thread.
* By doing so the situation is effectively prevented.
*/
if (time_travel_mode == TT_MODE_INFCPU ||
time_travel_mode == TT_MODE_EXTERNAL) {
#ifdef CONFIG_UML_MAX_USERSPACE_ITERATIONS
if (CONFIG_UML_MAX_USERSPACE_ITERATIONS &&
unscheduled_userspace_iterations++ >
CONFIG_UML_MAX_USERSPACE_ITERATIONS) {
tt_extra_sched_jiffies += 1;
unscheduled_userspace_iterations = 0;
}
#endif
}
time_travel_print_bc_msg();
current_mm_sync();
if (using_seccomp) {
struct stub_data *proc_data = (void *) mm_id->stack;
err = set_stub_state(regs, proc_data, singlestepping());
if (err) {
printk(UM_KERN_ERR "%s - failed to set regs: %d",
__func__, err);
fatal_sigsegv();
}
/* Must have been reset by the syscall caller */
if (proc_data->restart_wait != 0)
panic("Programming error: Flag to only run syscalls in child was not cleared!");
/* Mark pending syscalls for flushing */
proc_data->syscall_data_len = mm_id->syscall_data_len;
wait_stub_done_seccomp(mm_id, 0, 0);
sig = proc_data->signal;
if (sig == SIGTRAP && proc_data->err != 0) {
printk(UM_KERN_ERR "%s - Error flushing stub syscalls",
__func__);
syscall_stub_dump_error(mm_id);
mm_id->syscall_data_len = proc_data->err;
fatal_sigsegv();
}
mm_id->syscall_data_len = 0;
mm_id->syscall_fd_num = 0;
err = get_stub_state(regs, proc_data, NULL);
if (err) {
printk(UM_KERN_ERR "%s - failed to get regs: %d",
__func__, err);
fatal_sigsegv();
}
if (proc_data->si_offset > sizeof(proc_data->sigstack) - sizeof(*si))
panic("%s - Invalid siginfo offset from child",
__func__);
si = (void *)&proc_data->sigstack[proc_data->si_offset];
regs->is_user = 1;
/* Fill in ORIG_RAX and extract fault information */
PT_SYSCALL_NR(regs->gp) = si->si_syscall;
if (sig == SIGSEGV) {
mcontext_t *mcontext = (void *)&proc_data->sigstack[proc_data->mctx_offset];
GET_FAULTINFO_FROM_MC(regs->faultinfo, mcontext);
}
} else {
int pid = mm_id->pid;
/* Flush out any pending syscalls */
err = syscall_stub_flush(mm_id);
if (err) {
if (err == -ENOMEM)
report_enomem();
printk(UM_KERN_ERR "%s - Error flushing stub syscalls: %d",
__func__, -err);
fatal_sigsegv();
}
/*
* This can legitimately fail if the process loads a
* bogus value into a segment register. It will
* segfault and PTRACE_GETREGS will read that value
* out of the process. However, PTRACE_SETREGS will
* fail. In this case, there is nothing to do but
* just kill the process.
*/
if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (put_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (singlestepping())
op = PTRACE_SYSEMU_SINGLESTEP;
else
op = PTRACE_SYSEMU;
if (ptrace(op, pid, 0, 0)) {
printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
__func__, op, errno);
fatal_sigsegv();
}
CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
if (err < 0) {
printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
regs->is_user = 1;
if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (get_fp_registers(pid, regs->fp)) {
printk(UM_KERN_ERR "%s - get_fp_registers failed, errno = %d\n",
__func__, errno);
fatal_sigsegv();
}
if (WIFSTOPPED(status)) {
sig = WSTOPSIG(status);
/*
* These signal handlers need the si argument
* and SIGSEGV needs the faultinfo.
* The SIGIO and SIGALARM handlers which constitute
* the majority of invocations, do not use it.
*/
switch (sig) {
case SIGSEGV:
get_skas_faultinfo(pid,
®s->faultinfo);
fallthrough;
case SIGTRAP:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
ptrace(PTRACE_GETSIGINFO, pid, 0,
(struct siginfo *)&si_ptrace);
si = &si_ptrace;
break;
default:
si = NULL;
break;
}
} else {
sig = 0;
}
}
UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
if (sig) {
switch (sig) {
case SIGSEGV:
if (using_seccomp || PTRACE_FULL_FAULTINFO)
(*sig_info[SIGSEGV])(SIGSEGV,
(struct siginfo *)si,
regs, NULL);
else
segv(regs->faultinfo, 0, 1, NULL, NULL);
break;
case SIGSYS:
handle_syscall(regs);
break;
case SIGTRAP + 0x80:
handle_trap(regs);
break;
case SIGTRAP:
relay_signal(SIGTRAP, (struct siginfo *)si, regs, NULL);
break;
case SIGALRM:
break;
case SIGIO:
case SIGILL:
case SIGBUS:
case SIGFPE:
case SIGWINCH:
block_signals_trace();
(*sig_info[sig])(sig, (struct siginfo *)si, regs, NULL);
unblock_signals_trace();
break;
default:
printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
__func__, sig);
fatal_sigsegv();
}
interrupt_end();
/* Avoid -ERESTARTSYS handling in host */
if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
PT_SYSCALL_NR(regs->gp) = -1;
}
}
}
void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
{
(*buf)[0].JB_IP = (unsigned long) handler;
(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
sizeof(void *);
}
#define INIT_JMP_NEW_THREAD 0
#define INIT_JMP_CALLBACK 1
#define INIT_JMP_HALT 2
#define INIT_JMP_REBOOT 3
void switch_threads(jmp_buf *me, jmp_buf *you)
{
unscheduled_userspace_iterations = 0;
if (UML_SETJMP(me) == 0)
UML_LONGJMP(you, 1);
}
static jmp_buf initial_jmpbuf;
/* XXX Make these percpu */
static void (*cb_proc)(void *arg);
static void *cb_arg;
static jmp_buf *cb_back;
int start_idle_thread(void *stack, jmp_buf *switch_buf)
{
int n;
set_handler(SIGWINCH);
/*
* Can't use UML_SETJMP or UML_LONGJMP here because they save
* and restore signals, with the possible side-effect of
* trying to handle any signals which came when they were
* blocked, which can't be done on this stack.
* Signals must be blocked when jumping back here and restored
* after returning to the jumper.
*/
n = setjmp(initial_jmpbuf);
switch (n) {
case INIT_JMP_NEW_THREAD:
(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
(*switch_buf)[0].JB_SP = (unsigned long) stack +
UM_THREAD_SIZE - sizeof(void *);
break;
case INIT_JMP_CALLBACK:
(*cb_proc)(cb_arg);
longjmp(*cb_back, 1);
break;
case INIT_JMP_HALT:
kmalloc_ok = 0;
return 0;
case INIT_JMP_REBOOT:
kmalloc_ok = 0;
return 1;
default:
printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
__func__, n);
fatal_sigsegv();
}
longjmp(*switch_buf, 1);
/* unreachable */
printk(UM_KERN_ERR "impossible long jump!");
fatal_sigsegv();
return 0;
}
void initial_thread_cb_skas(void (*proc)(void *), void *arg)
{
jmp_buf here;
cb_proc = proc;
cb_arg = arg;
cb_back = &here;
block_signals_trace();
if (UML_SETJMP(&here) == 0)
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
unblock_signals_trace();
cb_proc = NULL;
cb_arg = NULL;
cb_back = NULL;
}
void halt_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
}
static bool noreboot;
static int __init noreboot_cmd_param(char *str, int *add)
{
*add = 0;
noreboot = true;
return 0;
}
__uml_setup("noreboot", noreboot_cmd_param,
"noreboot\n"
" Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
" This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
" crashes in CI\n\n");
void reboot_skas(void)
{
block_signals_trace();
UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
}
|