1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// SPDX-License-Identifier: GPL-2.0
/*
* Cortex A72 EDAC L1 and L2 cache error detection
*
* Copyright (c) 2020 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
* Copyright (c) 2025 Microsoft Corporation, <vijayb@linux.microsoft.com>
*
* Based on Code from:
* Copyright (c) 2018, NXP Semiconductor
* Author: York Sun <york.sun@nxp.com>
*/
#include <linux/module.h>
#include <linux/of.h>
#include <linux/bitfield.h>
#include <asm/smp_plat.h>
#include "edac_module.h"
#define DRVNAME "a72-edac"
#define SYS_CPUMERRSR_EL1 sys_reg(3, 1, 15, 2, 2)
#define SYS_L2MERRSR_EL1 sys_reg(3, 1, 15, 2, 3)
#define CPUMERRSR_EL1_RAMID GENMASK(30, 24)
#define L2MERRSR_EL1_CPUID_WAY GENMASK(21, 18)
#define CPUMERRSR_EL1_VALID BIT(31)
#define CPUMERRSR_EL1_FATAL BIT(63)
#define L2MERRSR_EL1_VALID BIT(31)
#define L2MERRSR_EL1_FATAL BIT(63)
#define L1_I_TAG_RAM 0x00
#define L1_I_DATA_RAM 0x01
#define L1_D_TAG_RAM 0x08
#define L1_D_DATA_RAM 0x09
#define TLB_RAM 0x18
#define MESSAGE_SIZE 64
struct mem_err_synd_reg {
u64 cpu_mesr;
u64 l2_mesr;
};
static struct cpumask compat_mask;
static void report_errors(struct edac_device_ctl_info *edac_ctl, int cpu,
struct mem_err_synd_reg *mesr)
{
u64 cpu_mesr = mesr->cpu_mesr;
u64 l2_mesr = mesr->l2_mesr;
char msg[MESSAGE_SIZE];
if (cpu_mesr & CPUMERRSR_EL1_VALID) {
const char *str;
bool fatal = cpu_mesr & CPUMERRSR_EL1_FATAL;
switch (FIELD_GET(CPUMERRSR_EL1_RAMID, cpu_mesr)) {
case L1_I_TAG_RAM:
str = "L1-I Tag RAM";
break;
case L1_I_DATA_RAM:
str = "L1-I Data RAM";
break;
case L1_D_TAG_RAM:
str = "L1-D Tag RAM";
break;
case L1_D_DATA_RAM:
str = "L1-D Data RAM";
break;
case TLB_RAM:
str = "TLB RAM";
break;
default:
str = "Unspecified";
break;
}
snprintf(msg, MESSAGE_SIZE, "%s %s error(s) on CPU %d",
str, fatal ? "fatal" : "correctable", cpu);
if (fatal)
edac_device_handle_ue(edac_ctl, cpu, 0, msg);
else
edac_device_handle_ce(edac_ctl, cpu, 0, msg);
}
if (l2_mesr & L2MERRSR_EL1_VALID) {
bool fatal = l2_mesr & L2MERRSR_EL1_FATAL;
snprintf(msg, MESSAGE_SIZE, "L2 %s error(s) on CPU %d CPUID/WAY 0x%lx",
fatal ? "fatal" : "correctable", cpu,
FIELD_GET(L2MERRSR_EL1_CPUID_WAY, l2_mesr));
if (fatal)
edac_device_handle_ue(edac_ctl, cpu, 1, msg);
else
edac_device_handle_ce(edac_ctl, cpu, 1, msg);
}
}
static void read_errors(void *data)
{
struct mem_err_synd_reg *mesr = data;
mesr->cpu_mesr = read_sysreg_s(SYS_CPUMERRSR_EL1);
if (mesr->cpu_mesr & CPUMERRSR_EL1_VALID) {
write_sysreg_s(0, SYS_CPUMERRSR_EL1);
isb();
}
mesr->l2_mesr = read_sysreg_s(SYS_L2MERRSR_EL1);
if (mesr->l2_mesr & L2MERRSR_EL1_VALID) {
write_sysreg_s(0, SYS_L2MERRSR_EL1);
isb();
}
}
static void a72_edac_check(struct edac_device_ctl_info *edac_ctl)
{
struct mem_err_synd_reg mesr;
int cpu;
cpus_read_lock();
for_each_cpu_and(cpu, cpu_online_mask, &compat_mask) {
smp_call_function_single(cpu, read_errors, &mesr, true);
report_errors(edac_ctl, cpu, &mesr);
}
cpus_read_unlock();
}
static int a72_edac_probe(struct platform_device *pdev)
{
struct edac_device_ctl_info *edac_ctl;
struct device *dev = &pdev->dev;
int rc;
edac_ctl = edac_device_alloc_ctl_info(0, "cpu",
num_possible_cpus(), "L", 2, 1,
edac_device_alloc_index());
if (!edac_ctl)
return -ENOMEM;
edac_ctl->edac_check = a72_edac_check;
edac_ctl->dev = dev;
edac_ctl->mod_name = dev_name(dev);
edac_ctl->dev_name = dev_name(dev);
edac_ctl->ctl_name = DRVNAME;
dev_set_drvdata(dev, edac_ctl);
rc = edac_device_add_device(edac_ctl);
if (rc)
goto out_dev;
return 0;
out_dev:
edac_device_free_ctl_info(edac_ctl);
return rc;
}
static void a72_edac_remove(struct platform_device *pdev)
{
struct edac_device_ctl_info *edac_ctl = dev_get_drvdata(&pdev->dev);
edac_device_del_device(edac_ctl->dev);
edac_device_free_ctl_info(edac_ctl);
}
static const struct of_device_id cortex_arm64_edac_of_match[] = {
{ .compatible = "arm,cortex-a72" },
{}
};
MODULE_DEVICE_TABLE(of, cortex_arm64_edac_of_match);
static struct platform_driver a72_edac_driver = {
.probe = a72_edac_probe,
.remove = a72_edac_remove,
.driver = {
.name = DRVNAME,
},
};
static struct platform_device *a72_pdev;
static int __init a72_edac_driver_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct device_node *np __free(device_node) = of_cpu_device_node_get(cpu);
if (np) {
if (of_match_node(cortex_arm64_edac_of_match, np) &&
of_property_read_bool(np, "edac-enabled")) {
cpumask_set_cpu(cpu, &compat_mask);
}
} else {
pr_warn("failed to find device node for CPU %d\n", cpu);
}
}
if (cpumask_empty(&compat_mask))
return 0;
a72_pdev = platform_device_register_simple(DRVNAME, -1, NULL, 0);
if (IS_ERR(a72_pdev)) {
pr_err("failed to register A72 EDAC device\n");
return PTR_ERR(a72_pdev);
}
return platform_driver_register(&a72_edac_driver);
}
static void __exit a72_edac_driver_exit(void)
{
platform_device_unregister(a72_pdev);
platform_driver_unregister(&a72_edac_driver);
}
module_init(a72_edac_driver_init);
module_exit(a72_edac_driver_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_DESCRIPTION("Cortex A72 L1 and L2 cache EDAC driver");
|