1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
// SPDX-License-Identifier: GPL-2.0
//! `register!` macro to define register layout and accessors.
//!
//! A single register typically includes several fields, which are accessed through a combination
//! of bit-shift and mask operations that introduce a class of potential mistakes, notably because
//! not all possible field values are necessarily valid.
//!
//! The `register!` macro in this module provides an intuitive and readable syntax for defining a
//! dedicated type for each register. Each such type comes with its own field accessors that can
//! return an error if a field's value is invalid.
/// Trait providing a base address to be added to the offset of a relative register to obtain
/// its actual offset.
///
/// The `T` generic argument is used to distinguish which base to use, in case a type provides
/// several bases. It is given to the `register!` macro to restrict the use of the register to
/// implementors of this particular variant.
pub(crate) trait RegisterBase<T> {
const BASE: usize;
}
/// Defines a dedicated type for a register with an absolute offset, including getter and setter
/// methods for its fields and methods to read and write it from an `Io` region.
///
/// Example:
///
/// ```no_run
/// register!(BOOT_0 @ 0x00000100, "Basic revision information about the GPU" {
/// 3:0 minor_revision as u8, "Minor revision of the chip";
/// 7:4 major_revision as u8, "Major revision of the chip";
/// 28:20 chipset as u32 ?=> Chipset, "Chipset model";
/// });
/// ```
///
/// This defines a `BOOT_0` type which can be read or written from offset `0x100` of an `Io`
/// region. It is composed of 3 fields, for instance `minor_revision` is made of the 4 least
/// significant bits of the register. Each field can be accessed and modified using accessor
/// methods:
///
/// ```no_run
/// // Read from the register's defined offset (0x100).
/// let boot0 = BOOT_0::read(&bar);
/// pr_info!("chip revision: {}.{}", boot0.major_revision(), boot0.minor_revision());
///
/// // `Chipset::try_from` is called with the value of the `chipset` field and returns an
/// // error if it is invalid.
/// let chipset = boot0.chipset()?;
///
/// // Update some fields and write the value back.
/// boot0.set_major_revision(3).set_minor_revision(10).write(&bar);
///
/// // Or, just read and update the register in a single step:
/// BOOT_0::alter(&bar, |r| r.set_major_revision(3).set_minor_revision(10));
/// ```
///
/// Fields are defined as follows:
///
/// - `as <type>` simply returns the field value casted to <type>, typically `u32`, `u16`, `u8` or
/// `bool`. Note that `bool` fields must have a range of 1 bit.
/// - `as <type> => <into_type>` calls `<into_type>`'s `From::<<type>>` implementation and returns
/// the result.
/// - `as <type> ?=> <try_into_type>` calls `<try_into_type>`'s `TryFrom::<<type>>` implementation
/// and returns the result. This is useful with fields for which not all values are valid.
///
/// The documentation strings are optional. If present, they will be added to the type's
/// definition, or the field getter and setter methods they are attached to.
///
/// It is also possible to create a alias register by using the `=> ALIAS` syntax. This is useful
/// for cases where a register's interpretation depends on the context:
///
/// ```no_run
/// register!(SCRATCH @ 0x00000200, "Scratch register" {
/// 31:0 value as u32, "Raw value";
/// });
///
/// register!(SCRATCH_BOOT_STATUS => SCRATCH, "Boot status of the firmware" {
/// 0:0 completed as bool, "Whether the firmware has completed booting";
/// });
/// ```
///
/// In this example, `SCRATCH_0_BOOT_STATUS` uses the same I/O address as `SCRATCH`, while also
/// providing its own `completed` field.
///
/// ## Relative registers
///
/// A register can be defined as being accessible from a fixed offset of a provided base. For
/// instance, imagine the following I/O space:
///
/// ```text
/// +-----------------------------+
/// | ... |
/// | |
/// 0x100--->+------------CPU0-------------+
/// | |
/// 0x110--->+-----------------------------+
/// | CPU_CTL |
/// +-----------------------------+
/// | ... |
/// | |
/// | |
/// 0x200--->+------------CPU1-------------+
/// | |
/// 0x210--->+-----------------------------+
/// | CPU_CTL |
/// +-----------------------------+
/// | ... |
/// +-----------------------------+
/// ```
///
/// `CPU0` and `CPU1` both have a `CPU_CTL` register that starts at offset `0x10` of their I/O
/// space segment. Since both instances of `CPU_CTL` share the same layout, we don't want to define
/// them twice and would prefer a way to select which one to use from a single definition
///
/// This can be done using the `Base[Offset]` syntax when specifying the register's address.
///
/// `Base` is an arbitrary type (typically a ZST) to be used as a generic parameter of the
/// [`RegisterBase`] trait to provide the base as a constant, i.e. each type providing a base for
/// this register needs to implement `RegisterBase<Base>`. Here is the above example translated
/// into code:
///
/// ```no_run
/// // Type used to identify the base.
/// pub(crate) struct CpuCtlBase;
///
/// // ZST describing `CPU0`.
/// struct Cpu0;
/// impl RegisterBase<CpuCtlBase> for Cpu0 {
/// const BASE: usize = 0x100;
/// }
/// // Singleton of `CPU0` used to identify it.
/// const CPU0: Cpu0 = Cpu0;
///
/// // ZST describing `CPU1`.
/// struct Cpu1;
/// impl RegisterBase<CpuCtlBase> for Cpu1 {
/// const BASE: usize = 0x200;
/// }
/// // Singleton of `CPU1` used to identify it.
/// const CPU1: Cpu1 = Cpu1;
///
/// // This makes `CPU_CTL` accessible from all implementors of `RegisterBase<CpuCtlBase>`.
/// register!(CPU_CTL @ CpuCtlBase[0x10], "CPU core control" {
/// 0:0 start as bool, "Start the CPU core";
/// });
///
/// // The `read`, `write` and `alter` methods of relative registers take an extra `base` argument
/// // that is used to resolve its final address by adding its `BASE` to the offset of the
/// // register.
///
/// // Start `CPU0`.
/// CPU_CTL::alter(bar, &CPU0, |r| r.set_start(true));
///
/// // Start `CPU1`.
/// CPU_CTL::alter(bar, &CPU1, |r| r.set_start(true));
///
/// // Aliases can also be defined for relative register.
/// register!(CPU_CTL_ALIAS => CpuCtlBase[CPU_CTL], "Alias to CPU core control" {
/// 1:1 alias_start as bool, "Start the aliased CPU core";
/// });
///
/// // Start the aliased `CPU0`.
/// CPU_CTL_ALIAS::alter(bar, &CPU0, |r| r.set_alias_start(true));
/// ```
///
/// ## Arrays of registers
///
/// Some I/O areas contain consecutive values that can be interpreted in the same way. These areas
/// can be defined as an array of identical registers, allowing them to be accessed by index with
/// compile-time or runtime bound checking. Simply define their address as `Address[Size]`, and add
/// an `idx` parameter to their `read`, `write` and `alter` methods:
///
/// ```no_run
/// # fn no_run() -> Result<(), Error> {
/// # fn get_scratch_idx() -> usize {
/// # 0x15
/// # }
/// // Array of 64 consecutive registers with the same layout starting at offset `0x80`.
/// register!(SCRATCH @ 0x00000080[64], "Scratch registers" {
/// 31:0 value as u32;
/// });
///
/// // Read scratch register 0, i.e. I/O address `0x80`.
/// let scratch_0 = SCRATCH::read(bar, 0).value();
/// // Read scratch register 15, i.e. I/O address `0x80 + (15 * 4)`.
/// let scratch_15 = SCRATCH::read(bar, 15).value();
///
/// // This is out of bounds and won't build.
/// // let scratch_128 = SCRATCH::read(bar, 128).value();
///
/// // Runtime-obtained array index.
/// let scratch_idx = get_scratch_idx();
/// // Access on a runtime index returns an error if it is out-of-bounds.
/// let some_scratch = SCRATCH::try_read(bar, scratch_idx)?.value();
///
/// // Alias to a particular register in an array.
/// // Here `SCRATCH[8]` is used to convey the firmware exit code.
/// register!(FIRMWARE_STATUS => SCRATCH[8], "Firmware exit status code" {
/// 7:0 status as u8;
/// });
///
/// let status = FIRMWARE_STATUS::read(bar).status();
///
/// // Non-contiguous register arrays can be defined by adding a stride parameter.
/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
/// // registers of the two declarations below are interleaved.
/// register!(SCRATCH_INTERLEAVED_0 @ 0x000000c0[16 ; 8], "Scratch registers bank 0" {
/// 31:0 value as u32;
/// });
/// register!(SCRATCH_INTERLEAVED_1 @ 0x000000c4[16 ; 8], "Scratch registers bank 1" {
/// 31:0 value as u32;
/// });
/// # Ok(())
/// # }
/// ```
///
/// ## Relative arrays of registers
///
/// Combining the two features described in the sections above, arrays of registers accessible from
/// a base can also be defined:
///
/// ```no_run
/// # fn no_run() -> Result<(), Error> {
/// # fn get_scratch_idx() -> usize {
/// # 0x15
/// # }
/// // Type used as parameter of `RegisterBase` to specify the base.
/// pub(crate) struct CpuCtlBase;
///
/// // ZST describing `CPU0`.
/// struct Cpu0;
/// impl RegisterBase<CpuCtlBase> for Cpu0 {
/// const BASE: usize = 0x100;
/// }
/// // Singleton of `CPU0` used to identify it.
/// const CPU0: Cpu0 = Cpu0;
///
/// // ZST describing `CPU1`.
/// struct Cpu1;
/// impl RegisterBase<CpuCtlBase> for Cpu1 {
/// const BASE: usize = 0x200;
/// }
/// // Singleton of `CPU1` used to identify it.
/// const CPU1: Cpu1 = Cpu1;
///
/// // 64 per-cpu scratch registers, arranged as an contiguous array.
/// register!(CPU_SCRATCH @ CpuCtlBase[0x00000080[64]], "Per-CPU scratch registers" {
/// 31:0 value as u32;
/// });
///
/// let cpu0_scratch_0 = CPU_SCRATCH::read(bar, &Cpu0, 0).value();
/// let cpu1_scratch_15 = CPU_SCRATCH::read(bar, &Cpu1, 15).value();
///
/// // This won't build.
/// // let cpu0_scratch_128 = CPU_SCRATCH::read(bar, &Cpu0, 128).value();
///
/// // Runtime-obtained array index.
/// let scratch_idx = get_scratch_idx();
/// // Access on a runtime value returns an error if it is out-of-bounds.
/// let cpu0_some_scratch = CPU_SCRATCH::try_read(bar, &Cpu0, scratch_idx)?.value();
///
/// // `SCRATCH[8]` is used to convey the firmware exit code.
/// register!(CPU_FIRMWARE_STATUS => CpuCtlBase[CPU_SCRATCH[8]],
/// "Per-CPU firmware exit status code" {
/// 7:0 status as u8;
/// });
///
/// let cpu0_status = CPU_FIRMWARE_STATUS::read(bar, &Cpu0).status();
///
/// // Non-contiguous register arrays can be defined by adding a stride parameter.
/// // Here, each of the 16 registers of the array are separated by 8 bytes, meaning that the
/// // registers of the two declarations below are interleaved.
/// register!(CPU_SCRATCH_INTERLEAVED_0 @ CpuCtlBase[0x00000d00[16 ; 8]],
/// "Scratch registers bank 0" {
/// 31:0 value as u32;
/// });
/// register!(CPU_SCRATCH_INTERLEAVED_1 @ CpuCtlBase[0x00000d04[16 ; 8]],
/// "Scratch registers bank 1" {
/// 31:0 value as u32;
/// });
/// # Ok(())
/// # }
/// ```
macro_rules! register {
// Creates a register at a fixed offset of the MMIO space.
($name:ident @ $offset:literal $(, $comment:literal)? { $($fields:tt)* } ) => {
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $offset);
};
// Creates an alias register of fixed offset register `alias` with its own fields.
($name:ident => $alias:ident $(, $comment:literal)? { $($fields:tt)* } ) => {
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $alias::OFFSET);
};
// Creates a register at a relative offset from a base address provider.
($name:ident @ $base:ty [ $offset:literal ] $(, $comment:literal)? { $($fields:tt)* } ) => {
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $offset ]);
};
// Creates an alias register of relative offset register `alias` with its own fields.
($name:ident => $base:ty [ $alias:ident ] $(, $comment:literal)? { $($fields:tt)* }) => {
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $alias::OFFSET ]);
};
// Creates an array of registers at a fixed offset of the MMIO space.
(
$name:ident @ $offset:literal [ $size:expr ; $stride:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
static_assert!(::core::mem::size_of::<u32>() <= $stride);
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_array $name @ $offset [ $size ; $stride ]);
};
// Shortcut for contiguous array of registers (stride == size of element).
(
$name:ident @ $offset:literal [ $size:expr ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!($name @ $offset [ $size ; ::core::mem::size_of::<u32>() ] $(, $comment)? {
$($fields)*
} );
};
// Creates an array of registers at a relative offset from a base address provider.
(
$name:ident @ $base:ty [ $offset:literal [ $size:expr ; $stride:expr ] ]
$(, $comment:literal)? { $($fields:tt)* }
) => {
static_assert!(::core::mem::size_of::<u32>() <= $stride);
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_relative_array $name @ $base [ $offset [ $size ; $stride ] ]);
};
// Shortcut for contiguous array of relative registers (stride == size of element).
(
$name:ident @ $base:ty [ $offset:literal [ $size:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
register!($name @ $base [ $offset [ $size ; ::core::mem::size_of::<u32>() ] ]
$(, $comment)? { $($fields)* } );
};
// Creates an alias of register `idx` of relative array of registers `alias` with its own
// fields.
(
$name:ident => $base:ty [ $alias:ident [ $idx:expr ] ] $(, $comment:literal)? {
$($fields:tt)*
}
) => {
static_assert!($idx < $alias::SIZE);
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_relative $name @ $base [ $alias::OFFSET + $idx * $alias::STRIDE ] );
};
// Creates an alias of register `idx` of array of registers `alias` with its own fields.
// This rule belongs to the (non-relative) register arrays set, but needs to be put last
// to avoid it being interpreted in place of the relative register array alias rule.
($name:ident => $alias:ident [ $idx:expr ] $(, $comment:literal)? { $($fields:tt)* }) => {
static_assert!($idx < $alias::SIZE);
register!(@core $name $(, $comment)? { $($fields)* } );
register!(@io_fixed $name @ $alias::OFFSET + $idx * $alias::STRIDE );
};
// All rules below are helpers.
// Defines the wrapper `$name` type, as well as its relevant implementations (`Debug`,
// `Default`, `BitOr`, and conversion to the value type) and field accessor methods.
(@core $name:ident $(, $comment:literal)? { $($fields:tt)* }) => {
$(
#[doc=$comment]
)?
#[repr(transparent)]
#[derive(Clone, Copy)]
pub(crate) struct $name(u32);
impl ::core::ops::BitOr for $name {
type Output = Self;
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl ::core::convert::From<$name> for u32 {
fn from(reg: $name) -> u32 {
reg.0
}
}
register!(@fields_dispatcher $name { $($fields)* });
};
// Captures the fields and passes them to all the implementers that require field information.
//
// Used to simplify the matching rules for implementers, so they don't need to match the entire
// complex fields rule even though they only make use of part of it.
(@fields_dispatcher $name:ident {
$($hi:tt:$lo:tt $field:ident as $type:tt
$(?=> $try_into_type:ty)?
$(=> $into_type:ty)?
$(, $comment:literal)?
;
)*
}
) => {
register!(@field_accessors $name {
$(
$hi:$lo $field as $type
$(?=> $try_into_type)?
$(=> $into_type)?
$(, $comment)?
;
)*
});
register!(@debug $name { $($field;)* });
register!(@default $name { $($field;)* });
};
// Defines all the field getter/methods methods for `$name`.
(
@field_accessors $name:ident {
$($hi:tt:$lo:tt $field:ident as $type:tt
$(?=> $try_into_type:ty)?
$(=> $into_type:ty)?
$(, $comment:literal)?
;
)*
}
) => {
$(
register!(@check_field_bounds $hi:$lo $field as $type);
)*
#[allow(dead_code)]
impl $name {
$(
register!(@field_accessor $name $hi:$lo $field as $type
$(?=> $try_into_type)?
$(=> $into_type)?
$(, $comment)?
;
);
)*
}
};
// Boolean fields must have `$hi == $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as bool) => {
#[allow(clippy::eq_op)]
const _: () = {
::kernel::build_assert!(
$hi == $lo,
concat!("boolean field `", stringify!($field), "` covers more than one bit")
);
};
};
// Non-boolean fields must have `$hi >= $lo`.
(@check_field_bounds $hi:tt:$lo:tt $field:ident as $type:tt) => {
#[allow(clippy::eq_op)]
const _: () = {
::kernel::build_assert!(
$hi >= $lo,
concat!("field `", stringify!($field), "`'s MSB is smaller than its LSB")
);
};
};
// Catches fields defined as `bool` and convert them into a boolean value.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool => $into_type:ty
$(, $comment:literal)?;
) => {
register!(
@leaf_accessor $name $hi:$lo $field
{ |f| <$into_type>::from(if f != 0 { true } else { false }) }
$into_type => $into_type $(, $comment)?;
);
};
// Shortcut for fields defined as `bool` without the `=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as bool $(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as bool => bool $(, $comment)?;);
};
// Catches the `?=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt ?=> $try_into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field
{ |f| <$try_into_type>::try_from(f as $type) } $try_into_type =>
::core::result::Result<
$try_into_type,
<$try_into_type as ::core::convert::TryFrom<$type>>::Error
>
$(, $comment)?;);
};
// Catches the `=>` syntax for non-boolean fields.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt => $into_type:ty
$(, $comment:literal)?;
) => {
register!(@leaf_accessor $name $hi:$lo $field
{ |f| <$into_type>::from(f as $type) } $into_type => $into_type $(, $comment)?;);
};
// Shortcut for non-boolean fields defined without the `=>` or `?=>` syntax.
(
@field_accessor $name:ident $hi:tt:$lo:tt $field:ident as $type:tt
$(, $comment:literal)?;
) => {
register!(@field_accessor $name $hi:$lo $field as $type => $type $(, $comment)?;);
};
// Generates the accessor methods for a single field.
(
@leaf_accessor $name:ident $hi:tt:$lo:tt $field:ident
{ $process:expr } $to_type:ty => $res_type:ty $(, $comment:literal)?;
) => {
::kernel::macros::paste!(
const [<$field:upper _RANGE>]: ::core::ops::RangeInclusive<u8> = $lo..=$hi;
const [<$field:upper _MASK>]: u32 = ((((1 << $hi) - 1) << 1) + 1) - ((1 << $lo) - 1);
const [<$field:upper _SHIFT>]: u32 = Self::[<$field:upper _MASK>].trailing_zeros();
);
$(
#[doc="Returns the value of this field:"]
#[doc=$comment]
)?
#[inline(always)]
pub(crate) fn $field(self) -> $res_type {
::kernel::macros::paste!(
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
);
let field = ((self.0 & MASK) >> SHIFT);
$process(field)
}
::kernel::macros::paste!(
$(
#[doc="Sets the value of this field:"]
#[doc=$comment]
)?
#[inline(always)]
pub(crate) fn [<set_ $field>](mut self, value: $to_type) -> Self {
const MASK: u32 = $name::[<$field:upper _MASK>];
const SHIFT: u32 = $name::[<$field:upper _SHIFT>];
let value = (u32::from(value) << SHIFT) & MASK;
self.0 = (self.0 & !MASK) | value;
self
}
);
};
// Generates the `Debug` implementation for `$name`.
(@debug $name:ident { $($field:ident;)* }) => {
impl ::kernel::fmt::Debug for $name {
fn fmt(&self, f: &mut ::kernel::fmt::Formatter<'_>) -> ::kernel::fmt::Result {
f.debug_struct(stringify!($name))
.field("<raw>", &::kernel::prelude::fmt!("{:#x}", &self.0))
$(
.field(stringify!($field), &self.$field())
)*
.finish()
}
}
};
// Generates the `Default` implementation for `$name`.
(@default $name:ident { $($field:ident;)* }) => {
/// Returns a value for the register where all fields are set to their default value.
impl ::core::default::Default for $name {
fn default() -> Self {
#[allow(unused_mut)]
let mut value = Self(Default::default());
::kernel::macros::paste!(
$(
value.[<set_ $field>](Default::default());
)*
);
value
}
}
};
// Generates the IO accessors for a fixed offset register.
(@io_fixed $name:ident @ $offset:expr) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
/// Read the register from its address in `io`.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(io: &T) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
Self(io.read32($offset))
}
/// Write the value contained in `self` to the register address in `io`.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(self, io: &T) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
io.write32(self.0, $offset)
}
/// Read the register from its address in `io` and run `f` on its value to obtain a new
/// value to write back.
#[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io));
reg.write(io);
}
}
};
// Generates the IO accessors for a relative offset register.
(@io_relative $name:ident @ $base:ty [ $offset:expr ]) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
/// Read the register from `io`, using the base address provided by `base` and adding
/// the register's offset to it.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T, B>(
io: &T,
#[allow(unused_variables)]
base: &B,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
const OFFSET: usize = $name::OFFSET;
let value = io.read32(
<B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
);
Self(value)
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the register's offset to it.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T, B>(
self,
io: &T,
#[allow(unused_variables)]
base: &B,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
const OFFSET: usize = $name::OFFSET;
io.write32(
self.0,
<B as crate::regs::macros::RegisterBase<$base>>::BASE + OFFSET
);
}
/// Read the register from `io`, using the base address provided by `base` and adding
/// the register's offset to it, then run `f` on its value to obtain a new value to
/// write back.
#[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base));
reg.write(io, base);
}
}
};
// Generates the IO accessors for an array of registers.
(@io_array $name:ident @ $offset:literal [ $size:expr ; $stride:expr ]) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
pub(crate) const SIZE: usize = $size;
pub(crate) const STRIDE: usize = $stride;
/// Read the array register at index `idx` from its address in `io`.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T>(
io: &T,
idx: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
build_assert!(idx < Self::SIZE);
let offset = Self::OFFSET + (idx * Self::STRIDE);
let value = io.read32(offset);
Self(value)
}
/// Write the value contained in `self` to the array register with index `idx` in `io`.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T>(
self,
io: &T,
idx: usize
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
build_assert!(idx < Self::SIZE);
let offset = Self::OFFSET + (idx * Self::STRIDE);
io.write32(self.0, offset);
}
/// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
/// new value to write back.
#[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, F>(
io: &T,
idx: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, idx));
reg.write(io, idx);
}
/// Read the array register at index `idx` from its address in `io`.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_read<const SIZE: usize, T>(
io: &T,
idx: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
if idx < Self::SIZE {
Ok(Self::read(io, idx))
} else {
Err(EINVAL)
}
}
/// Write the value contained in `self` to the array register with index `idx` in `io`.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_write<const SIZE: usize, T>(
self,
io: &T,
idx: usize,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
{
if idx < Self::SIZE {
Ok(self.write(io, idx))
} else {
Err(EINVAL)
}
}
/// Read the array register at index `idx` in `io` and run `f` on its value to obtain a
/// new value to write back.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_alter<const SIZE: usize, T, F>(
io: &T,
idx: usize,
f: F,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
F: ::core::ops::FnOnce(Self) -> Self,
{
if idx < Self::SIZE {
Ok(Self::alter(io, idx, f))
} else {
Err(EINVAL)
}
}
}
};
// Generates the IO accessors for an array of relative registers.
(
@io_relative_array $name:ident @ $base:ty
[ $offset:literal [ $size:expr ; $stride:expr ] ]
) => {
#[allow(dead_code)]
impl $name {
pub(crate) const OFFSET: usize = $offset;
pub(crate) const SIZE: usize = $size;
pub(crate) const STRIDE: usize = $stride;
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it.
#[inline(always)]
pub(crate) fn read<const SIZE: usize, T, B>(
io: &T,
#[allow(unused_variables)]
base: &B,
idx: usize,
) -> Self where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
build_assert!(idx < Self::SIZE);
let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
Self::OFFSET + (idx * Self::STRIDE);
let value = io.read32(offset);
Self(value)
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the offset of array register `idx` to it.
#[inline(always)]
pub(crate) fn write<const SIZE: usize, T, B>(
self,
io: &T,
#[allow(unused_variables)]
base: &B,
idx: usize
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
build_assert!(idx < Self::SIZE);
let offset = <B as crate::regs::macros::RegisterBase<$base>>::BASE +
Self::OFFSET + (idx * Self::STRIDE);
io.write32(self.0, offset);
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it, then run `f` on its value to
/// obtain a new value to write back.
#[inline(always)]
pub(crate) fn alter<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
idx: usize,
f: F,
) where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
let reg = f(Self::read(io, base, idx));
reg.write(io, base, idx);
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_read<const SIZE: usize, T, B>(
io: &T,
base: &B,
idx: usize,
) -> ::kernel::error::Result<Self> where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
if idx < Self::SIZE {
Ok(Self::read(io, base, idx))
} else {
Err(EINVAL)
}
}
/// Write the value contained in `self` to `io`, using the base address provided by
/// `base` and adding the offset of array register `idx` to it.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_write<const SIZE: usize, T, B>(
self,
io: &T,
base: &B,
idx: usize,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
{
if idx < Self::SIZE {
Ok(self.write(io, base, idx))
} else {
Err(EINVAL)
}
}
/// Read the array register at index `idx` from `io`, using the base address provided
/// by `base` and adding the register's offset to it, then run `f` on its value to
/// obtain a new value to write back.
///
/// The validity of `idx` is checked at run-time, and `EINVAL` is returned is the
/// access was out-of-bounds.
#[inline(always)]
pub(crate) fn try_alter<const SIZE: usize, T, B, F>(
io: &T,
base: &B,
idx: usize,
f: F,
) -> ::kernel::error::Result where
T: ::core::ops::Deref<Target = ::kernel::io::Io<SIZE>>,
B: crate::regs::macros::RegisterBase<$base>,
F: ::core::ops::FnOnce(Self) -> Self,
{
if idx < Self::SIZE {
Ok(Self::alter(io, base, idx, f))
} else {
Err(EINVAL)
}
}
}
};
}
|