1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
// SPDX-License-Identifier: GPL-2.0
/*
* ADMFM2000 Dual Microwave Down Converter
*
* Copyright 2024 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#define ADMFM2000_MIXER_MODE 0
#define ADMFM2000_DIRECT_IF_MODE 1
#define ADMFM2000_DSA_GPIOS 5
#define ADMFM2000_MODE_GPIOS 2
#define ADMFM2000_MAX_GAIN 0
#define ADMFM2000_MIN_GAIN -31000
#define ADMFM2000_DEFAULT_GAIN -0x20
struct admfm2000_state {
struct mutex lock; /* protect sensor state */
struct gpio_desc *sw1_ch[2];
struct gpio_desc *sw2_ch[2];
struct gpio_desc *dsa1_gpios[5];
struct gpio_desc *dsa2_gpios[5];
u32 gain[2];
};
static int admfm2000_mode(struct iio_dev *indio_dev, u32 chan, u32 mode)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (mode) {
case ADMFM2000_MIXER_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 1 : 0);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 0 : 1);
}
return 0;
case ADMFM2000_DIRECT_IF_MODE:
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
gpiod_set_value_cansleep(st->sw1_ch[i], (chan == 0) ? 0 : 1);
gpiod_set_value_cansleep(st->sw2_ch[i], (chan == 0) ? 1 : 0);
}
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_attenuation(struct iio_dev *indio_dev, u32 chan, u32 value)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int i;
switch (chan) {
case 0:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa1_gpios[i], value & (1 << i));
return 0;
case 1:
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++)
gpiod_set_value_cansleep(st->dsa2_gpios[i], value & (1 << i));
return 0;
default:
return -EINVAL;
}
}
static int admfm2000_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
gain = ~(st->gain[chan->channel]) * -1000;
*val = gain / 1000;
*val2 = (gain % 1000) * 1000;
mutex_unlock(&st->lock);
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct admfm2000_state *st = iio_priv(indio_dev);
int gain, ret;
if (val < 0)
gain = (val * 1000) - (val2 / 1000);
else
gain = (val * 1000) + (val2 / 1000);
if (gain > ADMFM2000_MAX_GAIN || gain < ADMFM2000_MIN_GAIN)
return -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
mutex_lock(&st->lock);
st->gain[chan->channel] = ~((abs(gain) / 1000) & 0x1F);
ret = admfm2000_attenuation(indio_dev, chan->channel,
st->gain[chan->channel]);
mutex_unlock(&st->lock);
return ret;
default:
return -EINVAL;
}
}
static int admfm2000_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_HARDWAREGAIN:
return IIO_VAL_INT_PLUS_MICRO_DB;
default:
return -EINVAL;
}
}
static const struct iio_info admfm2000_info = {
.read_raw = &admfm2000_read_raw,
.write_raw = &admfm2000_write_raw,
.write_raw_get_fmt = &admfm2000_write_raw_get_fmt,
};
#define ADMFM2000_CHAN(_channel) { \
.type = IIO_VOLTAGE, \
.output = 1, \
.indexed = 1, \
.channel = _channel, \
.info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN), \
}
static const struct iio_chan_spec admfm2000_channels[] = {
ADMFM2000_CHAN(0),
ADMFM2000_CHAN(1),
};
static int admfm2000_channel_config(struct admfm2000_state *st,
struct iio_dev *indio_dev)
{
struct platform_device *pdev = to_platform_device(indio_dev->dev.parent);
struct device *dev = &pdev->dev;
struct gpio_desc **dsa;
struct gpio_desc **sw;
int ret, i;
bool mode;
u32 reg;
device_for_each_child_node_scoped(dev, child) {
ret = fwnode_property_read_u32(child, "reg", ®);
if (ret)
return dev_err_probe(dev, ret,
"Failed to get reg property\n");
if (reg >= indio_dev->num_channels)
return dev_err_probe(dev, -EINVAL, "reg bigger than: %d\n",
indio_dev->num_channels);
if (fwnode_property_present(child, "adi,mixer-mode"))
mode = ADMFM2000_MIXER_MODE;
else
mode = ADMFM2000_DIRECT_IF_MODE;
switch (reg) {
case 0:
sw = st->sw1_ch;
dsa = st->dsa1_gpios;
break;
case 1:
sw = st->sw2_ch;
dsa = st->dsa2_gpios;
break;
default:
return -EINVAL;
}
for (i = 0; i < ADMFM2000_MODE_GPIOS; i++) {
sw[i] = devm_fwnode_gpiod_get_index(dev, child, "switch",
i, GPIOD_OUT_LOW, NULL);
if (IS_ERR(sw[i]))
return dev_err_probe(dev, PTR_ERR(sw[i]),
"Failed to get gpios\n");
}
for (i = 0; i < ADMFM2000_DSA_GPIOS; i++) {
dsa[i] = devm_fwnode_gpiod_get_index(dev, child,
"attenuation", i,
GPIOD_OUT_LOW, NULL);
if (IS_ERR(dsa[i]))
return dev_err_probe(dev, PTR_ERR(dsa[i]),
"Failed to get gpios\n");
}
ret = admfm2000_mode(indio_dev, reg, mode);
if (ret)
return ret;
}
return 0;
}
static int admfm2000_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct admfm2000_state *st;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
indio_dev->name = "admfm2000";
indio_dev->num_channels = ARRAY_SIZE(admfm2000_channels);
indio_dev->channels = admfm2000_channels;
indio_dev->info = &admfm2000_info;
indio_dev->modes = INDIO_DIRECT_MODE;
st->gain[0] = ADMFM2000_DEFAULT_GAIN;
st->gain[1] = ADMFM2000_DEFAULT_GAIN;
mutex_init(&st->lock);
ret = admfm2000_channel_config(st, indio_dev);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct of_device_id admfm2000_of_match[] = {
{ .compatible = "adi,admfm2000" },
{ }
};
MODULE_DEVICE_TABLE(of, admfm2000_of_match);
static struct platform_driver admfm2000_driver = {
.driver = {
.name = "admfm2000",
.of_match_table = admfm2000_of_match,
},
.probe = admfm2000_probe,
};
module_platform_driver(admfm2000_driver);
MODULE_AUTHOR("Kim Seer Paller <kimseer.paller@analog.com>");
MODULE_DESCRIPTION("ADMFM2000 Dual Microwave Down Converter");
MODULE_LICENSE("GPL");
|