1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) KEBA Industrial Automation Gmbh 2024
*
* Driver for KEBA system FPGA
*
* The KEBA system FPGA implements various devices. This driver registers
* auxiliary devices for every device within the FPGA.
*/
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/misc/keba.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/nvmem-consumer.h>
#include <linux/nvmem-provider.h>
#include <linux/pci.h>
#include <linux/spi/flash.h>
#include <linux/spi/spi.h>
#define CP500 "cp500"
#define PCI_VENDOR_ID_KEBA 0xCEBA
#define PCI_DEVICE_ID_KEBA_CP035 0x2706
#define PCI_DEVICE_ID_KEBA_CP505 0x2703
#define PCI_DEVICE_ID_KEBA_CP520 0x2696
#define CP500_SYS_BAR 0
#define CP500_ECM_BAR 1
/* BAR 0 registers */
#define CP500_VERSION_REG 0x00
#define CP500_RECONFIG_REG 0x11 /* upper 8-bits of STARTUP register */
#define CP500_PRESENT_REG 0x20
#define CP500_AXI_REG 0x40
/* Bits in BUILD_REG */
#define CP500_BUILD_TEST 0x8000 /* FPGA test version */
/* Bits in RECONFIG_REG */
#define CP500_RECFG_REQ 0x01 /* reconfigure FPGA on next reset */
/* Bits in PRESENT_REG */
#define CP500_PRESENT_FAN0 0x01
/* MSIX */
#define CP500_AXI_MSIX 3
#define CP500_RFB_UART_MSIX 4
#define CP500_DEBUG_UART_MSIX 5
#define CP500_SI1_UART_MSIX 6
#define CP500_NUM_MSIX 8
#define CP500_NUM_MSIX_NO_MMI 2
#define CP500_NUM_MSIX_NO_AXI 3
/* EEPROM */
#define CP500_EEPROM_DA_OFFSET 0x016F
#define CP500_EEPROM_DA_ESC_TYPE_MASK 0x01
#define CP500_EEPROM_ESC_LAN9252 0x00
#define CP500_EEPROM_ESC_ET1100 0x01
#define CP500_EEPROM_CPU_NAME "cpu_eeprom"
#define CP500_EEPROM_CPU_OFFSET 0
#define CP500_EEPROM_CPU_SIZE 3072
#define CP500_EEPROM_USER_NAME "user_eeprom"
#define CP500_EEPROM_USER_OFFSET 3072
#define CP500_EEPROM_USER_SIZE 1024
/* SPI flash running at full speed */
#define CP500_FLASH_HZ (33 * 1000 * 1000)
/* LAN9252 */
#define CP500_LAN9252_HZ (10 * 1000 * 1000)
#define CP500_IS_CP035(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP035)
#define CP500_IS_CP505(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP505)
#define CP500_IS_CP520(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP520)
struct cp500_dev_info {
off_t offset;
size_t size;
unsigned int msix;
};
struct cp500_devs {
struct cp500_dev_info startup;
struct cp500_dev_info spi;
struct cp500_dev_info i2c;
struct cp500_dev_info fan;
struct cp500_dev_info batt;
struct cp500_dev_info uart0_rfb;
struct cp500_dev_info uart1_dbg;
struct cp500_dev_info uart2_si1;
};
/* list of devices within FPGA of CP035 family (CP035, CP056, CP057) */
static struct cp500_devs cp035_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x1000, SZ_4K },
.i2c = { 0x4000, SZ_4K },
.fan = { 0x9000, SZ_4K },
.batt = { 0xA000, SZ_4K },
.uart0_rfb = { 0xB000, SZ_4K, CP500_RFB_UART_MSIX },
.uart2_si1 = { 0xD000, SZ_4K, CP500_SI1_UART_MSIX },
};
/* list of devices within FPGA of CP505 family (CP503, CP505, CP507) */
static struct cp500_devs cp505_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x4000, SZ_4K },
.i2c = { 0x5000, SZ_4K },
.fan = { 0x9000, SZ_4K },
.batt = { 0xA000, SZ_4K },
.uart0_rfb = { 0xB000, SZ_4K, CP500_RFB_UART_MSIX },
.uart2_si1 = { 0xD000, SZ_4K, CP500_SI1_UART_MSIX },
};
/* list of devices within FPGA of CP520 family (CP520, CP530) */
static struct cp500_devs cp520_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x4000, SZ_4K },
.i2c = { 0x5000, SZ_4K },
.fan = { 0x8000, SZ_4K },
.batt = { 0x9000, SZ_4K },
.uart0_rfb = { 0xC000, SZ_4K, CP500_RFB_UART_MSIX },
.uart1_dbg = { 0xD000, SZ_4K, CP500_DEBUG_UART_MSIX },
};
struct cp500_nvmem {
struct nvmem_device *base_nvmem;
unsigned int offset;
struct nvmem_device *nvmem;
};
struct cp500 {
struct pci_dev *pci_dev;
struct cp500_devs *devs;
int msix_num;
struct {
int major;
int minor;
int build;
} version;
struct notifier_block nvmem_notifier;
atomic_t nvmem_notified;
/* system FPGA BAR */
resource_size_t sys_hwbase;
struct keba_spi_auxdev *spi;
struct keba_i2c_auxdev *i2c;
struct keba_fan_auxdev *fan;
struct keba_batt_auxdev *batt;
struct keba_uart_auxdev *uart0_rfb;
struct keba_uart_auxdev *uart1_dbg;
struct keba_uart_auxdev *uart2_si1;
/* ECM EtherCAT BAR */
resource_size_t ecm_hwbase;
/* NVMEM devices */
struct cp500_nvmem nvmem_cpu;
struct cp500_nvmem nvmem_user;
void __iomem *system_startup_addr;
};
/* I2C devices */
#define CP500_EEPROM_ADDR 0x50
static struct i2c_board_info cp500_i2c_info[] = {
{ /* temperature sensor */
I2C_BOARD_INFO("emc1403", 0x4c),
},
{ /*
* CPU EEPROM
* CP035 family: CPU board
* CP505 family: bridge board
* CP520 family: carrier board
*/
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR),
},
{ /* interface board EEPROM */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 1),
},
{ /*
* EEPROM (optional)
* CP505 family: CPU board
* CP520 family: MMI board
*/
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 2),
},
{ /* extension module 0 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 3),
},
{ /* extension module 1 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 4),
},
{ /* extension module 2 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 5),
},
{ /* extension module 3 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 6),
}
};
/* SPI devices */
static struct mtd_partition cp500_partitions[] = {
{
.name = "system-flash-parts",
.size = MTDPART_SIZ_FULL,
.offset = 0,
.mask_flags = 0
}
};
static const struct flash_platform_data cp500_w25q32 = {
.type = "w25q32",
.name = "system-flash",
.parts = cp500_partitions,
.nr_parts = ARRAY_SIZE(cp500_partitions),
};
static const struct flash_platform_data cp500_m25p16 = {
.type = "m25p16",
.name = "system-flash",
.parts = cp500_partitions,
.nr_parts = ARRAY_SIZE(cp500_partitions),
};
static struct spi_board_info cp500_spi_info[] = {
{ /* system FPGA configuration bitstream flash */
.modalias = "m25p80",
.platform_data = &cp500_m25p16,
.max_speed_hz = CP500_FLASH_HZ,
.chip_select = 0,
.mode = SPI_MODE_3,
}, { /* LAN9252 EtherCAT slave controller */
.modalias = "lan9252",
.platform_data = NULL,
.max_speed_hz = CP500_LAN9252_HZ,
.chip_select = 1,
.mode = SPI_MODE_3,
}
};
static ssize_t cp500_get_fpga_version(struct cp500 *cp500, char *buf,
size_t max_len)
{
int n;
if (CP500_IS_CP035(cp500))
n = scnprintf(buf, max_len, "CP035");
else if (CP500_IS_CP505(cp500))
n = scnprintf(buf, max_len, "CP505");
else
n = scnprintf(buf, max_len, "CP500");
n += scnprintf(buf + n, max_len - n, "_FPGA_%d.%02d",
cp500->version.major, cp500->version.minor);
/* test versions have test bit set */
if (cp500->version.build & CP500_BUILD_TEST)
n += scnprintf(buf + n, max_len - n, "Test%d",
cp500->version.build & ~CP500_BUILD_TEST);
n += scnprintf(buf + n, max_len - n, "\n");
return n;
}
static ssize_t version_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
return cp500_get_fpga_version(cp500, buf, PAGE_SIZE);
}
static DEVICE_ATTR_RO(version);
static ssize_t keep_cfg_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
unsigned long keep_cfg = 1;
/*
* FPGA configuration stream is kept during reset when RECONFIG bit is
* zero
*/
if (ioread8(cp500->system_startup_addr + CP500_RECONFIG_REG) &
CP500_RECFG_REQ)
keep_cfg = 0;
return sysfs_emit(buf, "%lu\n", keep_cfg);
}
static ssize_t keep_cfg_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
unsigned long keep_cfg;
if (kstrtoul(buf, 10, &keep_cfg) < 0)
return -EINVAL;
/*
* In normal operation "keep_cfg" is "1". This means that the FPGA keeps
* its configuration stream during a reset.
* In case of a firmware update of the FPGA, the configuration stream
* needs to be reloaded. This can be done without a powercycle by
* writing a "0" into the "keep_cfg" attribute. After a reset/reboot th
* new configuration stream will be loaded.
*/
if (keep_cfg)
iowrite8(0, cp500->system_startup_addr + CP500_RECONFIG_REG);
else
iowrite8(CP500_RECFG_REQ,
cp500->system_startup_addr + CP500_RECONFIG_REG);
return count;
}
static DEVICE_ATTR_RW(keep_cfg);
static struct attribute *cp500_attrs[] = {
&dev_attr_version.attr,
&dev_attr_keep_cfg.attr,
NULL
};
ATTRIBUTE_GROUPS(cp500);
static void cp500_i2c_release(struct device *dev)
{
struct keba_i2c_auxdev *i2c =
container_of(dev, struct keba_i2c_auxdev, auxdev.dev);
kfree(i2c);
}
static int cp500_register_i2c(struct cp500 *cp500)
{
int ret;
cp500->i2c = kzalloc(sizeof(*cp500->i2c), GFP_KERNEL);
if (!cp500->i2c)
return -ENOMEM;
cp500->i2c->auxdev.name = "i2c";
cp500->i2c->auxdev.id = 0;
cp500->i2c->auxdev.dev.release = cp500_i2c_release;
cp500->i2c->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->i2c->io = (struct resource) {
/* I2C register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->i2c.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->i2c.offset +
cp500->devs->i2c.size - 1,
.flags = IORESOURCE_MEM,
};
cp500->i2c->info_size = ARRAY_SIZE(cp500_i2c_info);
cp500->i2c->info = cp500_i2c_info;
ret = auxiliary_device_init(&cp500->i2c->auxdev);
if (ret) {
kfree(cp500->i2c);
cp500->i2c = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->i2c->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->i2c->auxdev);
cp500->i2c = NULL;
return ret;
}
return 0;
}
static void cp500_spi_release(struct device *dev)
{
struct keba_spi_auxdev *spi =
container_of(dev, struct keba_spi_auxdev, auxdev.dev);
kfree(spi);
}
static int cp500_register_spi(struct cp500 *cp500, u8 esc_type)
{
int info_size;
int ret;
cp500->spi = kzalloc(sizeof(*cp500->spi), GFP_KERNEL);
if (!cp500->spi)
return -ENOMEM;
if (CP500_IS_CP035(cp500))
cp500_spi_info[0].platform_data = &cp500_w25q32;
if (esc_type == CP500_EEPROM_ESC_LAN9252)
info_size = ARRAY_SIZE(cp500_spi_info);
else
info_size = ARRAY_SIZE(cp500_spi_info) - 1;
cp500->spi->auxdev.name = "spi";
cp500->spi->auxdev.id = 0;
cp500->spi->auxdev.dev.release = cp500_spi_release;
cp500->spi->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->spi->io = (struct resource) {
/* SPI register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->spi.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->spi.offset +
cp500->devs->spi.size - 1,
.flags = IORESOURCE_MEM,
};
cp500->spi->info_size = info_size;
cp500->spi->info = cp500_spi_info;
ret = auxiliary_device_init(&cp500->spi->auxdev);
if (ret) {
kfree(cp500->spi);
cp500->spi = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->spi->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->spi->auxdev);
cp500->spi = NULL;
return ret;
}
return 0;
}
static void cp500_fan_release(struct device *dev)
{
struct keba_fan_auxdev *fan =
container_of(dev, struct keba_fan_auxdev, auxdev.dev);
kfree(fan);
}
static int cp500_register_fan(struct cp500 *cp500)
{
int ret;
cp500->fan = kzalloc(sizeof(*cp500->fan), GFP_KERNEL);
if (!cp500->fan)
return -ENOMEM;
cp500->fan->auxdev.name = "fan";
cp500->fan->auxdev.id = 0;
cp500->fan->auxdev.dev.release = cp500_fan_release;
cp500->fan->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->fan->io = (struct resource) {
/* fan register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->fan.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->fan.offset +
cp500->devs->fan.size - 1,
.flags = IORESOURCE_MEM,
};
ret = auxiliary_device_init(&cp500->fan->auxdev);
if (ret) {
kfree(cp500->fan);
cp500->fan = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->fan->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->fan->auxdev);
cp500->fan = NULL;
return ret;
}
return 0;
}
static void cp500_batt_release(struct device *dev)
{
struct keba_batt_auxdev *fan =
container_of(dev, struct keba_batt_auxdev, auxdev.dev);
kfree(fan);
}
static int cp500_register_batt(struct cp500 *cp500)
{
int ret;
cp500->batt = kzalloc(sizeof(*cp500->batt), GFP_KERNEL);
if (!cp500->batt)
return -ENOMEM;
cp500->batt->auxdev.name = "batt";
cp500->batt->auxdev.id = 0;
cp500->batt->auxdev.dev.release = cp500_batt_release;
cp500->batt->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->batt->io = (struct resource) {
/* battery register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->batt.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->batt.offset +
cp500->devs->batt.size - 1,
.flags = IORESOURCE_MEM,
};
ret = auxiliary_device_init(&cp500->batt->auxdev);
if (ret) {
kfree(cp500->batt);
cp500->batt = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->batt->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->batt->auxdev);
cp500->batt = NULL;
return ret;
}
return 0;
}
static void cp500_uart_release(struct device *dev)
{
struct keba_uart_auxdev *uart =
container_of(dev, struct keba_uart_auxdev, auxdev.dev);
kfree(uart);
}
static int cp500_register_uart(struct cp500 *cp500,
struct keba_uart_auxdev **uart, const char *name,
struct cp500_dev_info *info, unsigned int irq)
{
int ret;
*uart = kzalloc(sizeof(**uart), GFP_KERNEL);
if (!*uart)
return -ENOMEM;
(*uart)->auxdev.name = name;
(*uart)->auxdev.id = 0;
(*uart)->auxdev.dev.release = cp500_uart_release;
(*uart)->auxdev.dev.parent = &cp500->pci_dev->dev;
(*uart)->io = (struct resource) {
/* UART register area */
.start = (resource_size_t) cp500->sys_hwbase + info->offset,
.end = (resource_size_t) cp500->sys_hwbase + info->offset +
info->size - 1,
.flags = IORESOURCE_MEM,
};
(*uart)->irq = irq;
ret = auxiliary_device_init(&(*uart)->auxdev);
if (ret) {
kfree(*uart);
*uart = NULL;
return ret;
}
ret = __auxiliary_device_add(&(*uart)->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&(*uart)->auxdev);
*uart = NULL;
return ret;
}
return 0;
}
static int cp500_nvmem_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct cp500_nvmem *nvmem = priv;
int ret;
ret = nvmem_device_read(nvmem->base_nvmem, nvmem->offset + offset,
bytes, val);
if (ret != bytes)
return ret;
return 0;
}
static int cp500_nvmem_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct cp500_nvmem *nvmem = priv;
int ret;
ret = nvmem_device_write(nvmem->base_nvmem, nvmem->offset + offset,
bytes, val);
if (ret != bytes)
return ret;
return 0;
}
static int cp500_nvmem_register(struct cp500 *cp500,
struct nvmem_device *base_nvmem)
{
struct device *dev = &cp500->pci_dev->dev;
struct nvmem_config nvmem_config = {};
struct nvmem_device *tmp;
/*
* The main EEPROM of CP500 devices is logically split into two EEPROMs.
* The first logical EEPROM with 3 kB contains the type label which is
* programmed during production of the device. The second logical EEPROM
* with 1 kB is not programmed during production and can be used for
* arbitrary user data.
*/
nvmem_config.dev = dev;
nvmem_config.owner = THIS_MODULE;
nvmem_config.id = NVMEM_DEVID_NONE;
nvmem_config.type = NVMEM_TYPE_EEPROM;
nvmem_config.root_only = true;
nvmem_config.reg_read = cp500_nvmem_read;
nvmem_config.reg_write = cp500_nvmem_write;
cp500->nvmem_cpu.base_nvmem = base_nvmem;
cp500->nvmem_cpu.offset = CP500_EEPROM_CPU_OFFSET;
nvmem_config.name = CP500_EEPROM_CPU_NAME;
nvmem_config.size = CP500_EEPROM_CPU_SIZE;
nvmem_config.priv = &cp500->nvmem_cpu;
tmp = nvmem_register(&nvmem_config);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
cp500->nvmem_cpu.nvmem = tmp;
cp500->nvmem_user.base_nvmem = base_nvmem;
cp500->nvmem_user.offset = CP500_EEPROM_USER_OFFSET;
nvmem_config.name = CP500_EEPROM_USER_NAME;
nvmem_config.size = CP500_EEPROM_USER_SIZE;
nvmem_config.priv = &cp500->nvmem_user;
tmp = nvmem_register(&nvmem_config);
if (IS_ERR(tmp)) {
nvmem_unregister(cp500->nvmem_cpu.nvmem);
cp500->nvmem_cpu.nvmem = NULL;
return PTR_ERR(tmp);
}
cp500->nvmem_user.nvmem = tmp;
return 0;
}
static void cp500_nvmem_unregister(struct cp500 *cp500)
{
int notified;
if (cp500->nvmem_user.nvmem) {
nvmem_unregister(cp500->nvmem_user.nvmem);
cp500->nvmem_user.nvmem = NULL;
}
if (cp500->nvmem_cpu.nvmem) {
nvmem_unregister(cp500->nvmem_cpu.nvmem);
cp500->nvmem_cpu.nvmem = NULL;
}
/* CPU and user nvmem use the same base_nvmem, put only once */
notified = atomic_read(&cp500->nvmem_notified);
if (notified)
nvmem_device_put(cp500->nvmem_cpu.base_nvmem);
}
static int cp500_nvmem_match(struct device *dev, const void *data)
{
const struct cp500 *cp500 = data;
struct i2c_client *client;
/* match only CPU EEPROM below the cp500 device */
dev = dev->parent;
client = i2c_verify_client(dev);
if (!client || client->addr != CP500_EEPROM_ADDR)
return 0;
while ((dev = dev->parent))
if (dev == &cp500->pci_dev->dev)
return 1;
return 0;
}
static int cp500_nvmem(struct notifier_block *nb, unsigned long action,
void *data)
{
struct nvmem_device *nvmem;
struct cp500 *cp500;
struct device *dev;
int notified;
u8 esc_type;
int ret;
if (action != NVMEM_ADD)
return NOTIFY_DONE;
cp500 = container_of(nb, struct cp500, nvmem_notifier);
dev = &cp500->pci_dev->dev;
/* process CPU EEPROM content only once */
notified = atomic_read(&cp500->nvmem_notified);
if (notified)
return NOTIFY_DONE;
nvmem = nvmem_device_find(cp500, cp500_nvmem_match);
if (IS_ERR_OR_NULL(nvmem))
return NOTIFY_DONE;
if (!atomic_try_cmpxchg_relaxed(&cp500->nvmem_notified, ¬ified, 1)) {
nvmem_device_put(nvmem);
return NOTIFY_DONE;
}
ret = cp500_nvmem_register(cp500, nvmem);
if (ret)
return ret;
ret = nvmem_device_read(nvmem, CP500_EEPROM_DA_OFFSET, sizeof(esc_type),
(void *)&esc_type);
if (ret != sizeof(esc_type)) {
dev_warn(dev, "Failed to read device assembly!\n");
return NOTIFY_DONE;
}
esc_type &= CP500_EEPROM_DA_ESC_TYPE_MASK;
if (cp500_register_spi(cp500, esc_type))
dev_warn(dev, "Failed to register SPI!\n");
return NOTIFY_OK;
}
static void cp500_register_auxiliary_devs(struct cp500 *cp500)
{
struct device *dev = &cp500->pci_dev->dev;
u8 present = ioread8(cp500->system_startup_addr + CP500_PRESENT_REG);
if (cp500_register_i2c(cp500))
dev_warn(dev, "Failed to register I2C!\n");
if (present & CP500_PRESENT_FAN0)
if (cp500_register_fan(cp500))
dev_warn(dev, "Failed to register fan!\n");
if (cp500_register_batt(cp500))
dev_warn(dev, "Failed to register battery!\n");
if (cp500->devs->uart0_rfb.size &&
cp500->devs->uart0_rfb.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart0_rfb.msix);
if (cp500_register_uart(cp500, &cp500->uart0_rfb, "rs485-uart",
&cp500->devs->uart0_rfb, irq))
dev_warn(dev, "Failed to register RFB UART!\n");
}
if (cp500->devs->uart1_dbg.size &&
cp500->devs->uart1_dbg.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart1_dbg.msix);
if (cp500_register_uart(cp500, &cp500->uart1_dbg, "rs232-uart",
&cp500->devs->uart1_dbg, irq))
dev_warn(dev, "Failed to register debug UART!\n");
}
if (cp500->devs->uart2_si1.size &&
cp500->devs->uart2_si1.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart2_si1.msix);
if (cp500_register_uart(cp500, &cp500->uart2_si1, "uart",
&cp500->devs->uart2_si1, irq))
dev_warn(dev, "Failed to register SI1 UART!\n");
}
}
static void cp500_unregister_dev(struct auxiliary_device *auxdev)
{
auxiliary_device_delete(auxdev);
auxiliary_device_uninit(auxdev);
}
static void cp500_unregister_auxiliary_devs(struct cp500 *cp500)
{
if (cp500->spi) {
cp500_unregister_dev(&cp500->spi->auxdev);
cp500->spi = NULL;
}
if (cp500->i2c) {
cp500_unregister_dev(&cp500->i2c->auxdev);
cp500->i2c = NULL;
}
if (cp500->fan) {
cp500_unregister_dev(&cp500->fan->auxdev);
cp500->fan = NULL;
}
if (cp500->batt) {
cp500_unregister_dev(&cp500->batt->auxdev);
cp500->batt = NULL;
}
if (cp500->uart0_rfb) {
cp500_unregister_dev(&cp500->uart0_rfb->auxdev);
cp500->uart0_rfb = NULL;
}
if (cp500->uart1_dbg) {
cp500_unregister_dev(&cp500->uart1_dbg->auxdev);
cp500->uart1_dbg = NULL;
}
if (cp500->uart2_si1) {
cp500_unregister_dev(&cp500->uart2_si1->auxdev);
cp500->uart2_si1 = NULL;
}
}
static irqreturn_t cp500_axi_handler(int irq, void *dev)
{
struct cp500 *cp500 = dev;
u32 axi_address = ioread32(cp500->system_startup_addr + CP500_AXI_REG);
/*
* FPGA signals AXI response error, print AXI address to indicate which
* IP core was affected
*/
dev_err(&cp500->pci_dev->dev, "AXI response error at 0x%08x\n",
axi_address);
return IRQ_HANDLED;
}
static int cp500_enable(struct cp500 *cp500)
{
int axi_irq = -1;
int ret;
if (cp500->msix_num > CP500_NUM_MSIX_NO_AXI) {
axi_irq = pci_irq_vector(cp500->pci_dev, CP500_AXI_MSIX);
ret = request_irq(axi_irq, cp500_axi_handler, 0,
CP500, cp500);
if (ret != 0) {
dev_err(&cp500->pci_dev->dev,
"Failed to register AXI response error!\n");
return ret;
}
}
return 0;
}
static void cp500_disable(struct cp500 *cp500)
{
int axi_irq;
if (cp500->msix_num > CP500_NUM_MSIX_NO_AXI) {
axi_irq = pci_irq_vector(cp500->pci_dev, CP500_AXI_MSIX);
free_irq(axi_irq, cp500);
}
}
static int cp500_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct device *dev = &pci_dev->dev;
struct resource startup;
struct cp500 *cp500;
u32 cp500_vers;
char buf[64];
int ret;
cp500 = devm_kzalloc(dev, sizeof(*cp500), GFP_KERNEL);
if (!cp500)
return -ENOMEM;
cp500->pci_dev = pci_dev;
cp500->sys_hwbase = pci_resource_start(pci_dev, CP500_SYS_BAR);
cp500->ecm_hwbase = pci_resource_start(pci_dev, CP500_ECM_BAR);
if (!cp500->sys_hwbase || !cp500->ecm_hwbase)
return -ENODEV;
if (CP500_IS_CP035(cp500))
cp500->devs = &cp035_devices;
else if (CP500_IS_CP505(cp500))
cp500->devs = &cp505_devices;
else if (CP500_IS_CP520(cp500))
cp500->devs = &cp520_devices;
else
return -ENODEV;
ret = pci_enable_device(pci_dev);
if (ret)
return ret;
pci_set_master(pci_dev);
startup = *pci_resource_n(pci_dev, CP500_SYS_BAR);
startup.end = startup.start + cp500->devs->startup.size - 1;
cp500->system_startup_addr = devm_ioremap_resource(&pci_dev->dev,
&startup);
if (IS_ERR(cp500->system_startup_addr)) {
ret = PTR_ERR(cp500->system_startup_addr);
goto out_disable;
}
cp500->msix_num = pci_alloc_irq_vectors(pci_dev, CP500_NUM_MSIX_NO_MMI,
CP500_NUM_MSIX, PCI_IRQ_MSIX);
if (cp500->msix_num < CP500_NUM_MSIX_NO_MMI) {
dev_err(&pci_dev->dev,
"Hardware does not support enough MSI-X interrupts\n");
ret = -ENODEV;
goto out_disable;
}
cp500_vers = ioread32(cp500->system_startup_addr + CP500_VERSION_REG);
cp500->version.major = (cp500_vers & 0xff);
cp500->version.minor = (cp500_vers >> 8) & 0xff;
cp500->version.build = (cp500_vers >> 16) & 0xffff;
cp500_get_fpga_version(cp500, buf, sizeof(buf));
dev_info(&pci_dev->dev, "FPGA version %s", buf);
pci_set_drvdata(pci_dev, cp500);
cp500->nvmem_notifier.notifier_call = cp500_nvmem;
ret = nvmem_register_notifier(&cp500->nvmem_notifier);
if (ret != 0)
goto out_free_irq;
ret = cp500_enable(cp500);
if (ret != 0)
goto out_unregister_nvmem;
cp500_register_auxiliary_devs(cp500);
return 0;
out_unregister_nvmem:
nvmem_unregister_notifier(&cp500->nvmem_notifier);
out_free_irq:
pci_free_irq_vectors(pci_dev);
out_disable:
pci_clear_master(pci_dev);
pci_disable_device(pci_dev);
return ret;
}
static void cp500_remove(struct pci_dev *pci_dev)
{
struct cp500 *cp500 = pci_get_drvdata(pci_dev);
/*
* unregister CPU and user nvmem and put base_nvmem before parent
* auxiliary device of base_nvmem is unregistered
*/
nvmem_unregister_notifier(&cp500->nvmem_notifier);
cp500_nvmem_unregister(cp500);
cp500_unregister_auxiliary_devs(cp500);
cp500_disable(cp500);
pci_set_drvdata(pci_dev, 0);
pci_free_irq_vectors(pci_dev);
pci_clear_master(pci_dev);
pci_disable_device(pci_dev);
}
static struct pci_device_id cp500_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP035) },
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP505) },
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP520) },
{ }
};
MODULE_DEVICE_TABLE(pci, cp500_ids);
static struct pci_driver cp500_driver = {
.name = CP500,
.id_table = cp500_ids,
.probe = cp500_probe,
.remove = cp500_remove,
.dev_groups = cp500_groups,
};
module_pci_driver(cp500_driver);
MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
MODULE_DESCRIPTION("KEBA CP500 system FPGA driver");
MODULE_LICENSE("GPL");
|