1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* NXP NETC V4 Timer driver
* Copyright 2025 NXP
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/fsl/netc_global.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/ptp_clock_kernel.h>
#define NETC_TMR_PCI_VENDOR_NXP 0x1131
#define NETC_TMR_CTRL 0x0080
#define TMR_CTRL_CK_SEL GENMASK(1, 0)
#define TMR_CTRL_TE BIT(2)
#define TMR_ETEP(i) BIT(8 + (i))
#define TMR_COMP_MODE BIT(15)
#define TMR_CTRL_TCLK_PERIOD GENMASK(25, 16)
#define TMR_CTRL_PPL(i) BIT(27 - (i))
#define TMR_CTRL_FS BIT(28)
#define NETC_TMR_TEVENT 0x0084
#define TMR_TEVNET_PPEN(i) BIT(7 - (i))
#define TMR_TEVENT_PPEN_ALL GENMASK(7, 5)
#define TMR_TEVENT_ALMEN(i) BIT(16 + (i))
#define TMR_TEVENT_ETS_THREN(i) BIT(20 + (i))
#define TMR_TEVENT_ETSEN(i) BIT(24 + (i))
#define TMR_TEVENT_ETS_OVEN(i) BIT(28 + (i))
#define TMR_TEVENT_ETS(i) (TMR_TEVENT_ETS_THREN(i) | \
TMR_TEVENT_ETSEN(i) | \
TMR_TEVENT_ETS_OVEN(i))
#define NETC_TMR_TEMASK 0x0088
#define NETC_TMR_STAT 0x0094
#define TMR_STAT_ETS_VLD(i) BIT(24 + (i))
#define NETC_TMR_CNT_L 0x0098
#define NETC_TMR_CNT_H 0x009c
#define NETC_TMR_ADD 0x00a0
#define NETC_TMR_PRSC 0x00a8
#define NETC_TMR_ECTRL 0x00ac
#define NETC_TMR_OFF_L 0x00b0
#define NETC_TMR_OFF_H 0x00b4
/* i = 0, 1, i indicates the index of TMR_ALARM */
#define NETC_TMR_ALARM_L(i) (0x00b8 + (i) * 8)
#define NETC_TMR_ALARM_H(i) (0x00bc + (i) * 8)
/* i = 0, 1, 2. i indicates the index of TMR_FIPER. */
#define NETC_TMR_FIPER(i) (0x00d0 + (i) * 4)
#define NETC_TMR_FIPER_CTRL 0x00dc
#define FIPER_CTRL_DIS(i) (BIT(7) << (i) * 8)
#define FIPER_CTRL_PG(i) (BIT(6) << (i) * 8)
#define FIPER_CTRL_FS_ALARM(i) (BIT(5) << (i) * 8)
#define FIPER_CTRL_PW(i) (GENMASK(4, 0) << (i) * 8)
#define FIPER_CTRL_SET_PW(i, v) (((v) & GENMASK(4, 0)) << 8 * (i))
/* i = 0, 1, i indicates the index of TMR_ETTS */
#define NETC_TMR_ETTS_L(i) (0x00e0 + (i) * 8)
#define NETC_TMR_ETTS_H(i) (0x00e4 + (i) * 8)
#define NETC_TMR_CUR_TIME_L 0x00f0
#define NETC_TMR_CUR_TIME_H 0x00f4
#define NETC_TMR_REGS_BAR 0
#define NETC_GLOBAL_OFFSET 0x10000
#define NETC_GLOBAL_IPBRR0 0xbf8
#define IPBRR0_IP_REV GENMASK(15, 0)
#define NETC_REV_4_1 0x0401
#define NETC_TMR_FIPER_NUM 3
#define NETC_TMR_INVALID_CHANNEL NETC_TMR_FIPER_NUM
#define NETC_TMR_DEFAULT_PRSC 2
#define NETC_TMR_DEFAULT_ALARM GENMASK_ULL(63, 0)
#define NETC_TMR_DEFAULT_FIPER GENMASK(31, 0)
#define NETC_TMR_FIPER_MAX_PW GENMASK(4, 0)
#define NETC_TMR_ALARM_NUM 2
#define NETC_TMR_DEFAULT_ETTF_THR 7
/* 1588 timer reference clock source select */
#define NETC_TMR_CCM_TIMER1 0 /* enet_timer1_clk_root, from CCM */
#define NETC_TMR_SYSTEM_CLK 1 /* enet_clk_root/2, from CCM */
#define NETC_TMR_EXT_OSC 2 /* tmr_1588_clk, from IO pins */
#define NETC_TMR_SYSCLK_333M 333333333U
enum netc_pp_type {
NETC_PP_PPS = 1,
NETC_PP_PEROUT,
};
struct netc_pp {
enum netc_pp_type type;
bool enabled;
int alarm_id;
u32 period; /* pulse period, ns */
u64 stime; /* start time, ns */
};
struct netc_timer {
void __iomem *base;
struct pci_dev *pdev;
spinlock_t lock; /* Prevent concurrent access to registers */
struct ptp_clock *clock;
struct ptp_clock_info caps;
u32 clk_select;
u32 clk_freq;
u32 oclk_prsc;
/* High 32-bit is integer part, low 32-bit is fractional part */
u64 period;
int irq;
char irq_name[24];
int revision;
u32 tmr_emask;
u8 pps_channel;
u8 fs_alarm_num;
u8 fs_alarm_bitmap;
struct netc_pp pp[NETC_TMR_FIPER_NUM]; /* periodic pulse */
};
#define netc_timer_rd(p, o) netc_read((p)->base + (o))
#define netc_timer_wr(p, o, v) netc_write((p)->base + (o), v)
#define ptp_to_netc_timer(ptp) container_of((ptp), struct netc_timer, caps)
static const char *const timer_clk_src[] = {
"ccm",
"ext"
};
static void netc_timer_cnt_write(struct netc_timer *priv, u64 ns)
{
u32 tmr_cnt_h = upper_32_bits(ns);
u32 tmr_cnt_l = lower_32_bits(ns);
/* Writes to the TMR_CNT_L register copies the written value
* into the shadow TMR_CNT_L register. Writes to the TMR_CNT_H
* register copies the values written into the shadow TMR_CNT_H
* register. Contents of the shadow registers are copied into
* the TMR_CNT_L and TMR_CNT_H registers following a write into
* the TMR_CNT_H register. So the user must writes to TMR_CNT_L
* register first. Other H/L registers should have the same
* behavior.
*/
netc_timer_wr(priv, NETC_TMR_CNT_L, tmr_cnt_l);
netc_timer_wr(priv, NETC_TMR_CNT_H, tmr_cnt_h);
}
static u64 netc_timer_offset_read(struct netc_timer *priv)
{
u32 tmr_off_l, tmr_off_h;
u64 offset;
tmr_off_l = netc_timer_rd(priv, NETC_TMR_OFF_L);
tmr_off_h = netc_timer_rd(priv, NETC_TMR_OFF_H);
offset = (((u64)tmr_off_h) << 32) | tmr_off_l;
return offset;
}
static void netc_timer_offset_write(struct netc_timer *priv, u64 offset)
{
u32 tmr_off_h = upper_32_bits(offset);
u32 tmr_off_l = lower_32_bits(offset);
netc_timer_wr(priv, NETC_TMR_OFF_L, tmr_off_l);
netc_timer_wr(priv, NETC_TMR_OFF_H, tmr_off_h);
}
static u64 netc_timer_cur_time_read(struct netc_timer *priv)
{
u32 time_h, time_l;
u64 ns;
/* The user should read NETC_TMR_CUR_TIME_L first to
* get correct current time.
*/
time_l = netc_timer_rd(priv, NETC_TMR_CUR_TIME_L);
time_h = netc_timer_rd(priv, NETC_TMR_CUR_TIME_H);
ns = (u64)time_h << 32 | time_l;
return ns;
}
static void netc_timer_alarm_write(struct netc_timer *priv,
u64 alarm, int index)
{
u32 alarm_h = upper_32_bits(alarm);
u32 alarm_l = lower_32_bits(alarm);
netc_timer_wr(priv, NETC_TMR_ALARM_L(index), alarm_l);
netc_timer_wr(priv, NETC_TMR_ALARM_H(index), alarm_h);
}
static u32 netc_timer_get_integral_period(struct netc_timer *priv)
{
u32 tmr_ctrl, integral_period;
tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL);
integral_period = FIELD_GET(TMR_CTRL_TCLK_PERIOD, tmr_ctrl);
return integral_period;
}
static u32 netc_timer_calculate_fiper_pw(struct netc_timer *priv,
u32 fiper)
{
u64 divisor, pulse_width;
/* Set the FIPER pulse width to half FIPER interval by default.
* pulse_width = (fiper / 2) / TMR_GCLK_period,
* TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq,
* TMR_GCLK_freq = (clk_freq / oclk_prsc) Hz,
* so pulse_width = fiper * clk_freq / (2 * NSEC_PER_SEC * oclk_prsc).
*/
divisor = mul_u32_u32(2 * NSEC_PER_SEC, priv->oclk_prsc);
pulse_width = div64_u64(mul_u32_u32(fiper, priv->clk_freq), divisor);
/* The FIPER_PW field only has 5 bits, need to update oclk_prsc */
if (pulse_width > NETC_TMR_FIPER_MAX_PW)
pulse_width = NETC_TMR_FIPER_MAX_PW;
return pulse_width;
}
static void netc_timer_set_pps_alarm(struct netc_timer *priv, int channel,
u32 integral_period)
{
struct netc_pp *pp = &priv->pp[channel];
u64 alarm;
/* Get the alarm value */
alarm = netc_timer_cur_time_read(priv) + NSEC_PER_MSEC;
alarm = roundup_u64(alarm, NSEC_PER_SEC);
alarm = roundup_u64(alarm, integral_period);
netc_timer_alarm_write(priv, alarm, pp->alarm_id);
}
static void netc_timer_set_perout_alarm(struct netc_timer *priv, int channel,
u32 integral_period)
{
u64 cur_time = netc_timer_cur_time_read(priv);
struct netc_pp *pp = &priv->pp[channel];
u64 alarm, delta, min_time;
u32 period = pp->period;
u64 stime = pp->stime;
min_time = cur_time + NSEC_PER_MSEC + period;
if (stime < min_time) {
delta = min_time - stime;
stime += roundup_u64(delta, period);
}
alarm = roundup_u64(stime - period, integral_period);
netc_timer_alarm_write(priv, alarm, pp->alarm_id);
}
static int netc_timer_get_alarm_id(struct netc_timer *priv)
{
int i;
for (i = 0; i < priv->fs_alarm_num; i++) {
if (!(priv->fs_alarm_bitmap & BIT(i))) {
priv->fs_alarm_bitmap |= BIT(i);
break;
}
}
return i;
}
static u64 netc_timer_get_gclk_period(struct netc_timer *priv)
{
/* TMR_GCLK_freq = (clk_freq / oclk_prsc) Hz.
* TMR_GCLK_period = NSEC_PER_SEC / TMR_GCLK_freq.
* TMR_GCLK_period = (NSEC_PER_SEC * oclk_prsc) / clk_freq
*/
return div_u64(mul_u32_u32(NSEC_PER_SEC, priv->oclk_prsc),
priv->clk_freq);
}
static void netc_timer_enable_periodic_pulse(struct netc_timer *priv,
u8 channel)
{
u32 fiper_pw, fiper, fiper_ctrl, integral_period;
struct netc_pp *pp = &priv->pp[channel];
int alarm_id = pp->alarm_id;
integral_period = netc_timer_get_integral_period(priv);
/* Set to desired FIPER interval in ns - TCLK_PERIOD */
fiper = pp->period - integral_period;
fiper_pw = netc_timer_calculate_fiper_pw(priv, fiper);
fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL);
fiper_ctrl &= ~(FIPER_CTRL_DIS(channel) | FIPER_CTRL_PW(channel) |
FIPER_CTRL_FS_ALARM(channel));
fiper_ctrl |= FIPER_CTRL_SET_PW(channel, fiper_pw);
fiper_ctrl |= alarm_id ? FIPER_CTRL_FS_ALARM(channel) : 0;
priv->tmr_emask |= TMR_TEVENT_ALMEN(alarm_id);
if (pp->type == NETC_PP_PPS) {
priv->tmr_emask |= TMR_TEVNET_PPEN(channel);
netc_timer_set_pps_alarm(priv, channel, integral_period);
} else {
netc_timer_set_perout_alarm(priv, channel, integral_period);
}
netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask);
netc_timer_wr(priv, NETC_TMR_FIPER(channel), fiper);
netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
}
static void netc_timer_disable_periodic_pulse(struct netc_timer *priv,
u8 channel)
{
struct netc_pp *pp = &priv->pp[channel];
int alarm_id = pp->alarm_id;
u32 fiper_ctrl;
if (!pp->enabled)
return;
priv->tmr_emask &= ~(TMR_TEVNET_PPEN(channel) |
TMR_TEVENT_ALMEN(alarm_id));
fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL);
fiper_ctrl |= FIPER_CTRL_DIS(channel);
netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, alarm_id);
netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask);
netc_timer_wr(priv, NETC_TMR_FIPER(channel), NETC_TMR_DEFAULT_FIPER);
netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
}
static u8 netc_timer_select_pps_channel(struct netc_timer *priv)
{
int i;
for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
if (!priv->pp[i].enabled)
return i;
}
return NETC_TMR_INVALID_CHANNEL;
}
/* Note that users should not use this API to output PPS signal on
* external pins, because PTP_CLK_REQ_PPS trigger internal PPS event
* for input into kernel PPS subsystem. See:
* https://lore.kernel.org/r/20201117213826.18235-1-a.fatoum@pengutronix.de
*/
static int netc_timer_enable_pps(struct netc_timer *priv,
struct ptp_clock_request *rq, int on)
{
struct device *dev = &priv->pdev->dev;
unsigned long flags;
struct netc_pp *pp;
int err = 0;
spin_lock_irqsave(&priv->lock, flags);
if (on) {
int alarm_id;
u8 channel;
if (priv->pps_channel < NETC_TMR_FIPER_NUM) {
channel = priv->pps_channel;
} else {
channel = netc_timer_select_pps_channel(priv);
if (channel == NETC_TMR_INVALID_CHANNEL) {
dev_err(dev, "No available FIPERs\n");
err = -EBUSY;
goto unlock_spinlock;
}
}
pp = &priv->pp[channel];
if (pp->enabled)
goto unlock_spinlock;
alarm_id = netc_timer_get_alarm_id(priv);
if (alarm_id == priv->fs_alarm_num) {
dev_err(dev, "No available ALARMs\n");
err = -EBUSY;
goto unlock_spinlock;
}
pp->enabled = true;
pp->type = NETC_PP_PPS;
pp->alarm_id = alarm_id;
pp->period = NSEC_PER_SEC;
priv->pps_channel = channel;
netc_timer_enable_periodic_pulse(priv, channel);
} else {
/* pps_channel is invalid if PPS is not enabled, so no
* processing is needed.
*/
if (priv->pps_channel >= NETC_TMR_FIPER_NUM)
goto unlock_spinlock;
netc_timer_disable_periodic_pulse(priv, priv->pps_channel);
pp = &priv->pp[priv->pps_channel];
priv->fs_alarm_bitmap &= ~BIT(pp->alarm_id);
memset(pp, 0, sizeof(*pp));
priv->pps_channel = NETC_TMR_INVALID_CHANNEL;
}
unlock_spinlock:
spin_unlock_irqrestore(&priv->lock, flags);
return err;
}
static int net_timer_enable_perout(struct netc_timer *priv,
struct ptp_clock_request *rq, int on)
{
struct device *dev = &priv->pdev->dev;
u32 channel = rq->perout.index;
unsigned long flags;
struct netc_pp *pp;
int err = 0;
spin_lock_irqsave(&priv->lock, flags);
pp = &priv->pp[channel];
if (pp->type == NETC_PP_PPS) {
dev_err(dev, "FIPER%u is being used for PPS\n", channel);
err = -EBUSY;
goto unlock_spinlock;
}
if (on) {
u64 period_ns, gclk_period, max_period, min_period;
struct timespec64 period, stime;
u32 integral_period;
int alarm_id;
period.tv_sec = rq->perout.period.sec;
period.tv_nsec = rq->perout.period.nsec;
period_ns = timespec64_to_ns(&period);
integral_period = netc_timer_get_integral_period(priv);
max_period = (u64)NETC_TMR_DEFAULT_FIPER + integral_period;
gclk_period = netc_timer_get_gclk_period(priv);
min_period = gclk_period * 4 + integral_period;
if (period_ns > max_period || period_ns < min_period) {
dev_err(dev, "The period range is %llu ~ %llu\n",
min_period, max_period);
err = -EINVAL;
goto unlock_spinlock;
}
if (pp->enabled) {
alarm_id = pp->alarm_id;
} else {
alarm_id = netc_timer_get_alarm_id(priv);
if (alarm_id == priv->fs_alarm_num) {
dev_err(dev, "No available ALARMs\n");
err = -EBUSY;
goto unlock_spinlock;
}
pp->type = NETC_PP_PEROUT;
pp->enabled = true;
pp->alarm_id = alarm_id;
}
stime.tv_sec = rq->perout.start.sec;
stime.tv_nsec = rq->perout.start.nsec;
pp->stime = timespec64_to_ns(&stime);
pp->period = period_ns;
netc_timer_enable_periodic_pulse(priv, channel);
} else {
netc_timer_disable_periodic_pulse(priv, channel);
priv->fs_alarm_bitmap &= ~BIT(pp->alarm_id);
memset(pp, 0, sizeof(*pp));
}
unlock_spinlock:
spin_unlock_irqrestore(&priv->lock, flags);
return err;
}
static void netc_timer_handle_etts_event(struct netc_timer *priv, int index,
bool update_event)
{
struct ptp_clock_event event;
u32 etts_l = 0, etts_h = 0;
while (netc_timer_rd(priv, NETC_TMR_STAT) & TMR_STAT_ETS_VLD(index)) {
etts_l = netc_timer_rd(priv, NETC_TMR_ETTS_L(index));
etts_h = netc_timer_rd(priv, NETC_TMR_ETTS_H(index));
}
/* Invalid time stamp */
if (!etts_l && !etts_h)
return;
if (update_event) {
event.type = PTP_CLOCK_EXTTS;
event.index = index;
event.timestamp = (u64)etts_h << 32;
event.timestamp |= etts_l;
ptp_clock_event(priv->clock, &event);
}
}
static int netc_timer_enable_extts(struct netc_timer *priv,
struct ptp_clock_request *rq, int on)
{
int index = rq->extts.index;
unsigned long flags;
u32 tmr_ctrl;
/* Reject requests to enable time stamping on both edges */
if ((rq->extts.flags & PTP_EXTTS_EDGES) == PTP_EXTTS_EDGES)
return -EOPNOTSUPP;
spin_lock_irqsave(&priv->lock, flags);
netc_timer_handle_etts_event(priv, rq->extts.index, false);
if (on) {
tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL);
if (rq->extts.flags & PTP_FALLING_EDGE)
tmr_ctrl |= TMR_ETEP(index);
else
tmr_ctrl &= ~TMR_ETEP(index);
netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl);
priv->tmr_emask |= TMR_TEVENT_ETS(index);
} else {
priv->tmr_emask &= ~TMR_TEVENT_ETS(index);
}
netc_timer_wr(priv, NETC_TMR_TEMASK, priv->tmr_emask);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void netc_timer_disable_fiper(struct netc_timer *priv)
{
u32 fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL);
int i;
for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
if (!priv->pp[i].enabled)
continue;
fiper_ctrl |= FIPER_CTRL_DIS(i);
netc_timer_wr(priv, NETC_TMR_FIPER(i), NETC_TMR_DEFAULT_FIPER);
}
netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
}
static void netc_timer_enable_fiper(struct netc_timer *priv)
{
u32 integral_period = netc_timer_get_integral_period(priv);
u32 fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL);
int i;
for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
struct netc_pp *pp = &priv->pp[i];
u32 fiper;
if (!pp->enabled)
continue;
fiper_ctrl &= ~FIPER_CTRL_DIS(i);
if (pp->type == NETC_PP_PPS)
netc_timer_set_pps_alarm(priv, i, integral_period);
else if (pp->type == NETC_PP_PEROUT)
netc_timer_set_perout_alarm(priv, i, integral_period);
fiper = pp->period - integral_period;
netc_timer_wr(priv, NETC_TMR_FIPER(i), fiper);
}
netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
}
static int netc_timer_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
switch (rq->type) {
case PTP_CLK_REQ_PPS:
return netc_timer_enable_pps(priv, rq, on);
case PTP_CLK_REQ_PEROUT:
return net_timer_enable_perout(priv, rq, on);
case PTP_CLK_REQ_EXTTS:
return netc_timer_enable_extts(priv, rq, on);
default:
return -EOPNOTSUPP;
}
}
static int netc_timer_perout_loopback(struct ptp_clock_info *ptp,
unsigned int index, int on)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
unsigned long flags;
u32 tmr_ctrl;
spin_lock_irqsave(&priv->lock, flags);
tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL);
if (on)
tmr_ctrl |= TMR_CTRL_PPL(index);
else
tmr_ctrl &= ~TMR_CTRL_PPL(index);
netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static void netc_timer_adjust_period(struct netc_timer *priv, u64 period)
{
u32 fractional_period = lower_32_bits(period);
u32 integral_period = upper_32_bits(period);
u32 tmr_ctrl, old_tmr_ctrl;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
old_tmr_ctrl = netc_timer_rd(priv, NETC_TMR_CTRL);
tmr_ctrl = u32_replace_bits(old_tmr_ctrl, integral_period,
TMR_CTRL_TCLK_PERIOD);
if (tmr_ctrl != old_tmr_ctrl) {
netc_timer_disable_fiper(priv);
netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_enable_fiper(priv);
}
netc_timer_wr(priv, NETC_TMR_ADD, fractional_period);
spin_unlock_irqrestore(&priv->lock, flags);
}
static int netc_timer_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
u64 new_period;
new_period = adjust_by_scaled_ppm(priv->period, scaled_ppm);
netc_timer_adjust_period(priv, new_period);
return 0;
}
static int netc_timer_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
unsigned long flags;
s64 tmr_off;
spin_lock_irqsave(&priv->lock, flags);
netc_timer_disable_fiper(priv);
/* Adjusting TMROFF instead of TMR_CNT is that the timer
* counter keeps increasing during reading and writing
* TMR_CNT, which will cause latency.
*/
tmr_off = netc_timer_offset_read(priv);
tmr_off += delta;
netc_timer_offset_write(priv, tmr_off);
netc_timer_enable_fiper(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int netc_timer_gettimex64(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
unsigned long flags;
u64 ns;
spin_lock_irqsave(&priv->lock, flags);
ptp_read_system_prets(sts);
ns = netc_timer_cur_time_read(priv);
ptp_read_system_postts(sts);
spin_unlock_irqrestore(&priv->lock, flags);
*ts = ns_to_timespec64(ns);
return 0;
}
static int netc_timer_settime64(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct netc_timer *priv = ptp_to_netc_timer(ptp);
u64 ns = timespec64_to_ns(ts);
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
netc_timer_disable_fiper(priv);
netc_timer_offset_write(priv, 0);
netc_timer_cnt_write(priv, ns);
netc_timer_enable_fiper(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static const struct ptp_clock_info netc_timer_ptp_caps = {
.owner = THIS_MODULE,
.name = "NETC Timer PTP clock",
.max_adj = 500000000,
.n_pins = 0,
.n_alarm = 2,
.pps = 1,
.n_per_out = 3,
.n_ext_ts = 2,
.n_per_lp = 2,
.supported_extts_flags = PTP_RISING_EDGE | PTP_FALLING_EDGE |
PTP_STRICT_FLAGS,
.adjfine = netc_timer_adjfine,
.adjtime = netc_timer_adjtime,
.gettimex64 = netc_timer_gettimex64,
.settime64 = netc_timer_settime64,
.enable = netc_timer_enable,
.perout_loopback = netc_timer_perout_loopback,
};
static void netc_timer_init(struct netc_timer *priv)
{
u32 fractional_period = lower_32_bits(priv->period);
u32 integral_period = upper_32_bits(priv->period);
u32 tmr_ctrl, fiper_ctrl;
struct timespec64 now;
u64 ns;
int i;
/* Software must enable timer first and the clock selected must be
* active, otherwise, the registers which are in the timer clock
* domain are not accessible.
*/
tmr_ctrl = FIELD_PREP(TMR_CTRL_CK_SEL, priv->clk_select) |
TMR_CTRL_TE | TMR_CTRL_FS;
netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_wr(priv, NETC_TMR_PRSC, priv->oclk_prsc);
/* Disable FIPER by default */
fiper_ctrl = netc_timer_rd(priv, NETC_TMR_FIPER_CTRL);
for (i = 0; i < NETC_TMR_FIPER_NUM; i++) {
fiper_ctrl |= FIPER_CTRL_DIS(i);
fiper_ctrl &= ~FIPER_CTRL_PG(i);
}
netc_timer_wr(priv, NETC_TMR_FIPER_CTRL, fiper_ctrl);
netc_timer_wr(priv, NETC_TMR_ECTRL, NETC_TMR_DEFAULT_ETTF_THR);
ktime_get_real_ts64(&now);
ns = timespec64_to_ns(&now);
netc_timer_cnt_write(priv, ns);
/* Allow atomic writes to TCLK_PERIOD and TMR_ADD, An update to
* TCLK_PERIOD does not take effect until TMR_ADD is written.
*/
tmr_ctrl |= FIELD_PREP(TMR_CTRL_TCLK_PERIOD, integral_period) |
TMR_COMP_MODE;
netc_timer_wr(priv, NETC_TMR_CTRL, tmr_ctrl);
netc_timer_wr(priv, NETC_TMR_ADD, fractional_period);
}
static int netc_timer_pci_probe(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct netc_timer *priv;
int err;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
pcie_flr(pdev);
err = pci_enable_device_mem(pdev);
if (err)
return dev_err_probe(dev, err, "Failed to enable device\n");
dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
err = pci_request_mem_regions(pdev, KBUILD_MODNAME);
if (err) {
dev_err(dev, "pci_request_regions() failed, err:%pe\n",
ERR_PTR(err));
goto disable_dev;
}
pci_set_master(pdev);
priv->pdev = pdev;
priv->base = pci_ioremap_bar(pdev, NETC_TMR_REGS_BAR);
if (!priv->base) {
err = -ENOMEM;
goto release_mem_regions;
}
pci_set_drvdata(pdev, priv);
return 0;
release_mem_regions:
pci_release_mem_regions(pdev);
disable_dev:
pci_disable_device(pdev);
return err;
}
static void netc_timer_pci_remove(struct pci_dev *pdev)
{
struct netc_timer *priv = pci_get_drvdata(pdev);
iounmap(priv->base);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}
static int netc_timer_get_reference_clk_source(struct netc_timer *priv)
{
struct device *dev = &priv->pdev->dev;
struct clk *clk;
int i;
/* Select NETC system clock as the reference clock by default */
priv->clk_select = NETC_TMR_SYSTEM_CLK;
priv->clk_freq = NETC_TMR_SYSCLK_333M;
/* Update the clock source of the reference clock if the clock
* is specified in DT node.
*/
for (i = 0; i < ARRAY_SIZE(timer_clk_src); i++) {
clk = devm_clk_get_optional_enabled(dev, timer_clk_src[i]);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk),
"Failed to enable clock\n");
if (clk) {
priv->clk_freq = clk_get_rate(clk);
priv->clk_select = i ? NETC_TMR_EXT_OSC :
NETC_TMR_CCM_TIMER1;
break;
}
}
/* The period is a 64-bit number, the high 32-bit is the integer
* part of the period, the low 32-bit is the fractional part of
* the period. In order to get the desired 32-bit fixed-point
* format, multiply the numerator of the fraction by 2^32.
*/
priv->period = div_u64((u64)NSEC_PER_SEC << 32, priv->clk_freq);
return 0;
}
static int netc_timer_parse_dt(struct netc_timer *priv)
{
return netc_timer_get_reference_clk_source(priv);
}
static irqreturn_t netc_timer_isr(int irq, void *data)
{
struct netc_timer *priv = data;
struct ptp_clock_event event;
u32 tmr_event;
spin_lock(&priv->lock);
tmr_event = netc_timer_rd(priv, NETC_TMR_TEVENT);
tmr_event &= priv->tmr_emask;
/* Clear interrupts status */
netc_timer_wr(priv, NETC_TMR_TEVENT, tmr_event);
if (tmr_event & TMR_TEVENT_ALMEN(0))
netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 0);
if (tmr_event & TMR_TEVENT_ALMEN(1))
netc_timer_alarm_write(priv, NETC_TMR_DEFAULT_ALARM, 1);
if (tmr_event & TMR_TEVENT_PPEN_ALL) {
event.type = PTP_CLOCK_PPS;
ptp_clock_event(priv->clock, &event);
}
if (tmr_event & TMR_TEVENT_ETS(0))
netc_timer_handle_etts_event(priv, 0, true);
if (tmr_event & TMR_TEVENT_ETS(1))
netc_timer_handle_etts_event(priv, 1, true);
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static int netc_timer_init_msix_irq(struct netc_timer *priv)
{
struct pci_dev *pdev = priv->pdev;
int err, n;
n = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSIX);
if (n != 1) {
err = (n < 0) ? n : -EPERM;
dev_err(&pdev->dev, "pci_alloc_irq_vectors() failed\n");
return err;
}
priv->irq = pci_irq_vector(pdev, 0);
err = request_irq(priv->irq, netc_timer_isr, 0, priv->irq_name, priv);
if (err) {
dev_err(&pdev->dev, "request_irq() failed\n");
pci_free_irq_vectors(pdev);
return err;
}
return 0;
}
static void netc_timer_free_msix_irq(struct netc_timer *priv)
{
struct pci_dev *pdev = priv->pdev;
disable_irq(priv->irq);
free_irq(priv->irq, priv);
pci_free_irq_vectors(pdev);
}
static int netc_timer_get_global_ip_rev(struct netc_timer *priv)
{
u32 val;
val = netc_timer_rd(priv, NETC_GLOBAL_OFFSET + NETC_GLOBAL_IPBRR0);
return val & IPBRR0_IP_REV;
}
static int netc_timer_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct device *dev = &pdev->dev;
struct netc_timer *priv;
int err;
err = netc_timer_pci_probe(pdev);
if (err)
return err;
priv = pci_get_drvdata(pdev);
priv->revision = netc_timer_get_global_ip_rev(priv);
if (priv->revision == NETC_REV_4_1)
priv->fs_alarm_num = 1;
else
priv->fs_alarm_num = NETC_TMR_ALARM_NUM;
err = netc_timer_parse_dt(priv);
if (err)
goto timer_pci_remove;
priv->caps = netc_timer_ptp_caps;
priv->oclk_prsc = NETC_TMR_DEFAULT_PRSC;
priv->pps_channel = NETC_TMR_INVALID_CHANNEL;
spin_lock_init(&priv->lock);
snprintf(priv->irq_name, sizeof(priv->irq_name), "ptp-netc %s",
pci_name(pdev));
err = netc_timer_init_msix_irq(priv);
if (err)
goto timer_pci_remove;
netc_timer_init(priv);
priv->clock = ptp_clock_register(&priv->caps, dev);
if (IS_ERR(priv->clock)) {
err = PTR_ERR(priv->clock);
goto free_msix_irq;
}
return 0;
free_msix_irq:
netc_timer_free_msix_irq(priv);
timer_pci_remove:
netc_timer_pci_remove(pdev);
return err;
}
static void netc_timer_remove(struct pci_dev *pdev)
{
struct netc_timer *priv = pci_get_drvdata(pdev);
netc_timer_wr(priv, NETC_TMR_TEMASK, 0);
netc_timer_wr(priv, NETC_TMR_CTRL, 0);
ptp_clock_unregister(priv->clock);
netc_timer_free_msix_irq(priv);
netc_timer_pci_remove(pdev);
}
static const struct pci_device_id netc_timer_id_table[] = {
{ PCI_DEVICE(NETC_TMR_PCI_VENDOR_NXP, 0xee02) },
{ }
};
MODULE_DEVICE_TABLE(pci, netc_timer_id_table);
static struct pci_driver netc_timer_driver = {
.name = KBUILD_MODNAME,
.id_table = netc_timer_id_table,
.probe = netc_timer_probe,
.remove = netc_timer_remove,
};
module_pci_driver(netc_timer_driver);
MODULE_DESCRIPTION("NXP NETC Timer PTP Driver");
MODULE_LICENSE("Dual BSD/GPL");
|