1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
// SPDX-License-Identifier: GPL-2.0
/*
* memory buffer pool support. Such pools are mostly used
* for guaranteed, deadlock-free memory allocations during
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
* debugging by David Rientjes, Copyright (C) 2015
*/
#include <linux/fault-inject.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include "slab.h"
static DECLARE_FAULT_ATTR(fail_mempool_alloc);
static DECLARE_FAULT_ATTR(fail_mempool_alloc_bulk);
static int __init mempool_faul_inject_init(void)
{
int error;
error = PTR_ERR_OR_ZERO(fault_create_debugfs_attr("fail_mempool_alloc",
NULL, &fail_mempool_alloc));
if (error)
return error;
/* booting will fail on error return here, don't bother to cleanup */
return PTR_ERR_OR_ZERO(
fault_create_debugfs_attr("fail_mempool_alloc_bulk", NULL,
&fail_mempool_alloc_bulk));
}
late_initcall(mempool_faul_inject_init);
#ifdef CONFIG_SLUB_DEBUG_ON
static void poison_error(struct mempool *pool, void *element, size_t size,
size_t byte)
{
const int nr = pool->curr_nr;
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
int i;
pr_err("BUG: mempool element poison mismatch\n");
pr_err("Mempool %p size %zu\n", pool, size);
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
for (i = start; i < end; i++)
pr_cont("%x ", *(u8 *)(element + i));
pr_cont("%s\n", end < size ? "..." : "");
dump_stack();
}
static void __check_element(struct mempool *pool, void *element, size_t size)
{
u8 *obj = element;
size_t i;
for (i = 0; i < size; i++) {
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
if (obj[i] != exp) {
poison_error(pool, element, size, i);
return;
}
}
memset(obj, POISON_INUSE, size);
}
static void check_element(struct mempool *pool, void *element)
{
/* Skip checking: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->free == mempool_kfree) {
__check_element(pool, element, (size_t)pool->pool_data);
} else if (pool->free == mempool_free_slab) {
__check_element(pool, element, kmem_cache_size(pool->pool_data));
} else if (pool->free == mempool_free_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
#ifdef CONFIG_HIGHMEM
for (int i = 0; i < (1 << order); i++) {
struct page *page = (struct page *)element;
void *addr = kmap_local_page(page + i);
__check_element(pool, addr, PAGE_SIZE);
kunmap_local(addr);
}
#else
void *addr = page_address((struct page *)element);
__check_element(pool, addr, PAGE_SIZE << order);
#endif
}
}
static void __poison_element(void *element, size_t size)
{
u8 *obj = element;
memset(obj, POISON_FREE, size - 1);
obj[size - 1] = POISON_END;
}
static void poison_element(struct mempool *pool, void *element)
{
/* Skip poisoning: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->alloc == mempool_kmalloc) {
__poison_element(element, (size_t)pool->pool_data);
} else if (pool->alloc == mempool_alloc_slab) {
__poison_element(element, kmem_cache_size(pool->pool_data));
} else if (pool->alloc == mempool_alloc_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
#ifdef CONFIG_HIGHMEM
for (int i = 0; i < (1 << order); i++) {
struct page *page = (struct page *)element;
void *addr = kmap_local_page(page + i);
__poison_element(addr, PAGE_SIZE);
kunmap_local(addr);
}
#else
void *addr = page_address((struct page *)element);
__poison_element(addr, PAGE_SIZE << order);
#endif
}
}
#else /* CONFIG_SLUB_DEBUG_ON */
static inline void check_element(struct mempool *pool, void *element)
{
}
static inline void poison_element(struct mempool *pool, void *element)
{
}
#endif /* CONFIG_SLUB_DEBUG_ON */
static __always_inline bool kasan_poison_element(struct mempool *pool,
void *element)
{
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
return kasan_mempool_poison_object(element);
else if (pool->alloc == mempool_alloc_pages)
return kasan_mempool_poison_pages(element,
(unsigned long)pool->pool_data);
return true;
}
static void kasan_unpoison_element(struct mempool *pool, void *element)
{
if (pool->alloc == mempool_kmalloc)
kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
else if (pool->alloc == mempool_alloc_slab)
kasan_mempool_unpoison_object(element,
kmem_cache_size(pool->pool_data));
else if (pool->alloc == mempool_alloc_pages)
kasan_mempool_unpoison_pages(element,
(unsigned long)pool->pool_data);
}
static __always_inline void add_element(struct mempool *pool, void *element)
{
BUG_ON(pool->min_nr != 0 && pool->curr_nr >= pool->min_nr);
poison_element(pool, element);
if (kasan_poison_element(pool, element))
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(struct mempool *pool)
{
void *element = pool->elements[--pool->curr_nr];
BUG_ON(pool->curr_nr < 0);
kasan_unpoison_element(pool, element);
check_element(pool, element);
return element;
}
/**
* mempool_exit - exit a mempool initialized with mempool_init()
* @pool: pointer to the memory pool which was initialized with
* mempool_init().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*
* May be called on a zeroed but uninitialized mempool (i.e. allocated with
* kzalloc()).
*/
void mempool_exit(struct mempool *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
pool->elements = NULL;
}
EXPORT_SYMBOL(mempool_exit);
/**
* mempool_destroy - deallocate a memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*/
void mempool_destroy(struct mempool *pool)
{
if (unlikely(!pool))
return;
mempool_exit(pool);
kfree(pool);
}
EXPORT_SYMBOL(mempool_destroy);
int mempool_init_node(struct mempool *pool, int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data, gfp_t gfp_mask, int node_id)
{
spin_lock_init(&pool->lock);
pool->min_nr = min_nr;
pool->pool_data = pool_data;
pool->alloc = alloc_fn;
pool->free = free_fn;
init_waitqueue_head(&pool->wait);
/*
* max() used here to ensure storage for at least 1 element to support
* zero minimum pool
*/
pool->elements = kmalloc_array_node(max(1, min_nr), sizeof(void *),
gfp_mask, node_id);
if (!pool->elements)
return -ENOMEM;
/*
* First pre-allocate the guaranteed number of buffers,
* also pre-allocate 1 element for zero minimum pool.
*/
while (pool->curr_nr < max(1, pool->min_nr)) {
void *element;
element = pool->alloc(gfp_mask, pool->pool_data);
if (unlikely(!element)) {
mempool_exit(pool);
return -ENOMEM;
}
add_element(pool, element);
}
return 0;
}
EXPORT_SYMBOL(mempool_init_node);
/**
* mempool_init - initialize a memory pool
* @pool: pointer to the memory pool that should be initialized
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* Like mempool_create(), but initializes the pool in (i.e. embedded in another
* structure).
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_init_noprof(struct mempool *pool, int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data)
{
return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
pool_data, GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_init_noprof);
/**
* mempool_create_node - create a memory pool
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
* @gfp_mask: memory allocation flags
* @node_id: numa node to allocate on
*
* this function creates and allocates a guaranteed size, preallocated
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
* functions might sleep - as long as the mempool_alloc() function is not called
* from IRQ contexts.
*
* Return: pointer to the created memory pool object or %NULL on error.
*/
struct mempool *mempool_create_node_noprof(int min_nr,
mempool_alloc_t *alloc_fn, mempool_free_t *free_fn,
void *pool_data, gfp_t gfp_mask, int node_id)
{
struct mempool *pool;
pool = kmalloc_node_noprof(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id);
if (!pool)
return NULL;
if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
gfp_mask, node_id)) {
kfree(pool);
return NULL;
}
return pool;
}
EXPORT_SYMBOL(mempool_create_node_noprof);
/**
* mempool_resize - resize an existing memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
* This function may sleep.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_resize(struct mempool *pool, int new_min_nr)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
might_sleep();
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
}
pool->min_nr = new_min_nr;
goto out_unlock;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
GFP_KERNEL);
if (!new_elements)
return -ENOMEM;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(new_min_nr <= pool->min_nr)) {
/* Raced, other resize will do our work */
spin_unlock_irqrestore(&pool->lock, flags);
kfree(new_elements);
goto out;
}
memcpy(new_elements, pool->elements,
pool->curr_nr * sizeof(*new_elements));
kfree(pool->elements);
pool->elements = new_elements;
pool->min_nr = new_min_nr;
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
} else {
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data); /* Raced */
goto out;
}
}
out_unlock:
spin_unlock_irqrestore(&pool->lock, flags);
out:
return 0;
}
EXPORT_SYMBOL(mempool_resize);
static unsigned int mempool_alloc_from_pool(struct mempool *pool, void **elems,
unsigned int count, unsigned int allocated,
gfp_t gfp_mask)
{
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(pool->curr_nr < count - allocated))
goto fail;
for (i = 0; i < count; i++) {
if (!elems[i]) {
elems[i] = remove_element(pool);
allocated++;
}
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Paired with rmb in mempool_free(), read comment there. */
smp_wmb();
/*
* Update the allocation stack trace as this is more useful for
* debugging.
*/
for (i = 0; i < count; i++)
kmemleak_update_trace(elems[i]);
return allocated;
fail:
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
DEFINE_WAIT(wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&pool->lock, flags);
/*
* Wait for someone else to return an element to @pool, but wake
* up occasionally as memory pressure might have reduced even
* and the normal allocation in alloc_fn could succeed even if
* no element was returned.
*/
io_schedule_timeout(5 * HZ);
finish_wait(&pool->wait, &wait);
} else {
/* We must not sleep if __GFP_DIRECT_RECLAIM is not set. */
spin_unlock_irqrestore(&pool->lock, flags);
}
return allocated;
}
/*
* Adjust the gfp flags for mempool allocations, as we never want to dip into
* the global emergency reserves or retry in the page allocator.
*
* The first pass also doesn't want to go reclaim, but the next passes do, so
* return a separate subset for that first iteration.
*/
static inline gfp_t mempool_adjust_gfp(gfp_t *gfp_mask)
{
*gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
return *gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
}
/**
* mempool_alloc_bulk - allocate multiple elements from a memory pool
* @pool: pointer to the memory pool
* @elems: partially or fully populated elements array
* @count: number of entries in @elem that need to be allocated
* @allocated: number of entries in @elem already allocated
*
* Allocate elements for each slot in @elem that is non-%NULL. This is done by
* first calling into the alloc_fn supplied at pool initialization time, and
* dipping into the reserved pool when alloc_fn fails to allocate an element.
*
* On return all @count elements in @elems will be populated.
*
* Return: Always 0. If it wasn't for %$#^$ alloc tags, it would return void.
*/
int mempool_alloc_bulk_noprof(struct mempool *pool, void **elems,
unsigned int count, unsigned int allocated)
{
gfp_t gfp_mask = GFP_KERNEL;
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
unsigned int i = 0;
VM_WARN_ON_ONCE(count > pool->min_nr);
might_alloc(gfp_mask);
/*
* If an error is injected, fail all elements in a bulk allocation so
* that we stress the multiple elements missing path.
*/
if (should_fail_ex(&fail_mempool_alloc_bulk, 1, FAULT_NOWARN)) {
pr_info("forcing mempool usage for %pS\n",
(void *)_RET_IP_);
goto use_pool;
}
repeat_alloc:
/*
* Try to allocate the elements using the allocation callback first as
* that might succeed even when the caller's bulk allocation did not.
*/
for (i = 0; i < count; i++) {
if (elems[i])
continue;
elems[i] = pool->alloc(gfp_temp, pool->pool_data);
if (unlikely(!elems[i]))
goto use_pool;
allocated++;
}
return 0;
use_pool:
allocated = mempool_alloc_from_pool(pool, elems, count, allocated,
gfp_temp);
gfp_temp = gfp_mask;
goto repeat_alloc;
}
EXPORT_SYMBOL_GPL(mempool_alloc_bulk_noprof);
/**
* mempool_alloc - allocate an element from a memory pool
* @pool: pointer to the memory pool
* @gfp_mask: GFP_* flags. %__GFP_ZERO is not supported.
*
* Allocate an element from @pool. This is done by first calling into the
* alloc_fn supplied at pool initialization time, and dipping into the reserved
* pool when alloc_fn fails to allocate an element.
*
* This function only sleeps if the alloc_fn callback sleeps, or when waiting
* for elements to become available in the pool.
*
* Return: pointer to the allocated element or %NULL when failing to allocate
* an element. Allocation failure can only happen when @gfp_mask does not
* include %__GFP_DIRECT_RECLAIM.
*/
void *mempool_alloc_noprof(struct mempool *pool, gfp_t gfp_mask)
{
gfp_t gfp_temp = mempool_adjust_gfp(&gfp_mask);
void *element;
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
might_alloc(gfp_mask);
repeat_alloc:
if (should_fail_ex(&fail_mempool_alloc, 1, FAULT_NOWARN)) {
pr_info("forcing mempool usage for %pS\n",
(void *)_RET_IP_);
element = NULL;
} else {
element = pool->alloc(gfp_temp, pool->pool_data);
}
if (unlikely(!element)) {
/*
* Try to allocate an element from the pool.
*
* The first pass won't have __GFP_DIRECT_RECLAIM and won't
* sleep in mempool_alloc_from_pool. Retry the allocation
* with all flags set in that case.
*/
if (!mempool_alloc_from_pool(pool, &element, 1, 0, gfp_temp)) {
if (gfp_temp != gfp_mask) {
gfp_temp = gfp_mask;
goto repeat_alloc;
}
if (gfp_mask & __GFP_DIRECT_RECLAIM) {
goto repeat_alloc;
}
}
}
return element;
}
EXPORT_SYMBOL(mempool_alloc_noprof);
/**
* mempool_alloc_preallocated - allocate an element from preallocated elements
* belonging to a memory pool
* @pool: pointer to the memory pool
*
* This function is similar to mempool_alloc(), but it only attempts allocating
* an element from the preallocated elements. It only takes a single spinlock_t
* and immediately returns if no preallocated elements are available.
*
* Return: pointer to the allocated element or %NULL if no elements are
* available.
*/
void *mempool_alloc_preallocated(struct mempool *pool)
{
void *element = NULL;
mempool_alloc_from_pool(pool, &element, 1, 0, GFP_NOWAIT);
return element;
}
EXPORT_SYMBOL(mempool_alloc_preallocated);
/**
* mempool_free_bulk - return elements to a mempool
* @pool: pointer to the memory pool
* @elems: elements to return
* @count: number of elements to return
*
* Returns a number of elements from the start of @elem to @pool if @pool needs
* replenishing and sets their slots in @elem to NULL. Other elements are left
* in @elem.
*
* Return: number of elements transferred to @pool. Elements are always
* transferred from the beginning of @elem, so the return value can be used as
* an offset into @elem for the freeing the remaining elements in the caller.
*/
unsigned int mempool_free_bulk(struct mempool *pool, void **elems,
unsigned int count)
{
unsigned long flags;
unsigned int freed = 0;
bool added = false;
/*
* Paired with the wmb in mempool_alloc(). The preceding read is
* for @element and the following @pool->curr_nr. This ensures
* that the visible value of @pool->curr_nr is from after the
* allocation of @element. This is necessary for fringe cases
* where @element was passed to this task without going through
* barriers.
*
* For example, assume @p is %NULL at the beginning and one task
* performs "p = mempool_alloc(...);" while another task is doing
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
* may end up using curr_nr value which is from before allocation
* of @p without the following rmb.
*/
smp_rmb();
/*
* For correctness, we need a test which is guaranteed to trigger
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
* without locking achieves that and refilling as soon as possible
* is desirable.
*
* Because curr_nr visible here is always a value after the
* allocation of @element, any task which decremented curr_nr below
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
* incremented to min_nr afterwards. If curr_nr gets incremented
* to min_nr after the allocation of @element, the elements
* allocated after that are subject to the same guarantee.
*
* Waiters happen iff curr_nr is 0 and the above guarantee also
* ensures that there will be frees which return elements to the
* pool waking up the waiters.
*
* For zero-minimum pools, curr_nr < min_nr (0 < 0) never succeeds,
* so waiters sleeping on pool->wait would never be woken by the
* wake-up path of previous test. This explicit check ensures the
* allocation of element when both min_nr and curr_nr are 0, and
* any active waiters are properly awakened.
*/
if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
spin_lock_irqsave(&pool->lock, flags);
while (pool->curr_nr < pool->min_nr && freed < count) {
add_element(pool, elems[freed++]);
added = true;
}
spin_unlock_irqrestore(&pool->lock, flags);
} else if (unlikely(pool->min_nr == 0 &&
READ_ONCE(pool->curr_nr) == 0)) {
/* Handle the min_nr = 0 edge case: */
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr == 0)) {
add_element(pool, elems[freed++]);
added = true;
}
spin_unlock_irqrestore(&pool->lock, flags);
}
if (unlikely(added) && wq_has_sleeper(&pool->wait))
wake_up(&pool->wait);
return freed;
}
EXPORT_SYMBOL_GPL(mempool_free_bulk);
/**
* mempool_free - return an element to the pool.
* @element: element to return
* @pool: pointer to the memory pool
*
* Returns @element to @pool if it needs replenishing, else frees it using
* the free_fn callback in @pool.
*
* This function only sleeps if the free_fn callback sleeps.
*/
void mempool_free(void *element, struct mempool *pool)
{
if (likely(element) && !mempool_free_bulk(pool, &element, 1))
pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);
/*
* A commonly used alloc and free fn.
*/
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
struct kmem_cache *mem = pool_data;
VM_BUG_ON(mem->ctor);
return kmem_cache_alloc_noprof(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
void mempool_free_slab(void *element, void *pool_data)
{
struct kmem_cache *mem = pool_data;
kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);
/*
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
* specified by pool_data
*/
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t)pool_data;
return kmalloc_noprof(size, gfp_mask);
}
EXPORT_SYMBOL(mempool_kmalloc);
void mempool_kfree(void *element, void *pool_data)
{
kfree(element);
}
EXPORT_SYMBOL(mempool_kfree);
/*
* A simple mempool-backed page allocator that allocates pages
* of the order specified by pool_data.
*/
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
{
int order = (int)(long)pool_data;
return alloc_pages_noprof(gfp_mask, order);
}
EXPORT_SYMBOL(mempool_alloc_pages);
void mempool_free_pages(void *element, void *pool_data)
{
int order = (int)(long)pool_data;
__free_pages(element, order);
}
EXPORT_SYMBOL(mempool_free_pages);
|