1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
|
// SPDX-License-Identifier: GPL-2.0
/*
* Device Memory Migration functionality.
*
* Originally written by Jérôme Glisse.
*/
#include <linux/export.h>
#include <linux/memremap.h>
#include <linux/migrate.h>
#include <linux/mm.h>
#include <linux/mm_inline.h>
#include <linux/mmu_notifier.h>
#include <linux/oom.h>
#include <linux/pagewalk.h>
#include <linux/rmap.h>
#include <linux/leafops.h>
#include <linux/pgalloc.h>
#include <asm/tlbflush.h>
#include "internal.h"
static int migrate_vma_collect_skip(unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = 0;
}
return 0;
}
static int migrate_vma_collect_hole(unsigned long start,
unsigned long end,
__always_unused int depth,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
unsigned long addr;
/* Only allow populating anonymous memory. */
if (!vma_is_anonymous(walk->vma))
return migrate_vma_collect_skip(start, end, walk);
if (thp_migration_supported() &&
(migrate->flags & MIGRATE_VMA_SELECT_COMPOUND) &&
(IS_ALIGNED(start, HPAGE_PMD_SIZE) &&
IS_ALIGNED(end, HPAGE_PMD_SIZE))) {
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE |
MIGRATE_PFN_COMPOUND;
migrate->dst[migrate->npages] = 0;
migrate->npages++;
migrate->cpages++;
/*
* Collect the remaining entries as holes, in case we
* need to split later
*/
return migrate_vma_collect_skip(start + PAGE_SIZE, end, walk);
}
for (addr = start; addr < end; addr += PAGE_SIZE) {
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
migrate->dst[migrate->npages] = 0;
migrate->npages++;
migrate->cpages++;
}
return 0;
}
/**
* migrate_vma_split_folio() - Helper function to split a THP folio
* @folio: the folio to split
* @fault_page: struct page associated with the fault if any
*
* Returns 0 on success
*/
static int migrate_vma_split_folio(struct folio *folio,
struct page *fault_page)
{
int ret;
struct folio *fault_folio = fault_page ? page_folio(fault_page) : NULL;
struct folio *new_fault_folio = NULL;
if (folio != fault_folio) {
folio_get(folio);
folio_lock(folio);
}
ret = split_folio(folio);
if (ret) {
if (folio != fault_folio) {
folio_unlock(folio);
folio_put(folio);
}
return ret;
}
new_fault_folio = fault_page ? page_folio(fault_page) : NULL;
/*
* Ensure the lock is held on the correct
* folio after the split
*/
if (!new_fault_folio) {
folio_unlock(folio);
folio_put(folio);
} else if (folio != new_fault_folio) {
if (new_fault_folio != fault_folio) {
folio_get(new_fault_folio);
folio_lock(new_fault_folio);
}
folio_unlock(folio);
folio_put(folio);
}
return 0;
}
/** migrate_vma_collect_huge_pmd - collect THP pages without splitting the
* folio for device private pages.
* @pmdp: pointer to pmd entry
* @start: start address of the range for migration
* @end: end address of the range for migration
* @walk: mm_walk callback structure
* @fault_folio: folio associated with the fault if any
*
* Collect the huge pmd entry at @pmdp for migration and set the
* MIGRATE_PFN_COMPOUND flag in the migrate src entry to indicate that
* migration will occur at HPAGE_PMD granularity
*/
static int migrate_vma_collect_huge_pmd(pmd_t *pmdp, unsigned long start,
unsigned long end, struct mm_walk *walk,
struct folio *fault_folio)
{
struct mm_struct *mm = walk->mm;
struct folio *folio;
struct migrate_vma *migrate = walk->private;
spinlock_t *ptl;
int ret;
unsigned long write = 0;
ptl = pmd_lock(mm, pmdp);
if (pmd_none(*pmdp)) {
spin_unlock(ptl);
return migrate_vma_collect_hole(start, end, -1, walk);
}
if (pmd_trans_huge(*pmdp)) {
if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
spin_unlock(ptl);
return migrate_vma_collect_skip(start, end, walk);
}
folio = pmd_folio(*pmdp);
if (is_huge_zero_folio(folio)) {
spin_unlock(ptl);
return migrate_vma_collect_hole(start, end, -1, walk);
}
if (pmd_write(*pmdp))
write = MIGRATE_PFN_WRITE;
} else if (!pmd_present(*pmdp)) {
const softleaf_t entry = softleaf_from_pmd(*pmdp);
folio = softleaf_to_folio(entry);
if (!softleaf_is_device_private(entry) ||
!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
(folio->pgmap->owner != migrate->pgmap_owner)) {
spin_unlock(ptl);
return migrate_vma_collect_skip(start, end, walk);
}
if (softleaf_is_migration(entry)) {
migration_entry_wait_on_locked(entry, ptl);
spin_unlock(ptl);
return -EAGAIN;
}
if (softleaf_is_device_private_write(entry))
write = MIGRATE_PFN_WRITE;
} else {
spin_unlock(ptl);
return -EAGAIN;
}
folio_get(folio);
if (folio != fault_folio && unlikely(!folio_trylock(folio))) {
spin_unlock(ptl);
folio_put(folio);
return migrate_vma_collect_skip(start, end, walk);
}
if (thp_migration_supported() &&
(migrate->flags & MIGRATE_VMA_SELECT_COMPOUND) &&
(IS_ALIGNED(start, HPAGE_PMD_SIZE) &&
IS_ALIGNED(end, HPAGE_PMD_SIZE))) {
struct page_vma_mapped_walk pvmw = {
.ptl = ptl,
.address = start,
.pmd = pmdp,
.vma = walk->vma,
};
unsigned long pfn = page_to_pfn(folio_page(folio, 0));
migrate->src[migrate->npages] = migrate_pfn(pfn) | write
| MIGRATE_PFN_MIGRATE
| MIGRATE_PFN_COMPOUND;
migrate->dst[migrate->npages++] = 0;
migrate->cpages++;
ret = set_pmd_migration_entry(&pvmw, folio_page(folio, 0));
if (ret) {
migrate->npages--;
migrate->cpages--;
migrate->src[migrate->npages] = 0;
migrate->dst[migrate->npages] = 0;
goto fallback;
}
migrate_vma_collect_skip(start + PAGE_SIZE, end, walk);
spin_unlock(ptl);
return 0;
}
fallback:
spin_unlock(ptl);
if (!folio_test_large(folio))
goto done;
ret = split_folio(folio);
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
if (ret)
return migrate_vma_collect_skip(start, end, walk);
if (pmd_none(pmdp_get_lockless(pmdp)))
return migrate_vma_collect_hole(start, end, -1, walk);
done:
return -ENOENT;
}
static int migrate_vma_collect_pmd(pmd_t *pmdp,
unsigned long start,
unsigned long end,
struct mm_walk *walk)
{
struct migrate_vma *migrate = walk->private;
struct vm_area_struct *vma = walk->vma;
struct mm_struct *mm = vma->vm_mm;
unsigned long addr = start, unmapped = 0;
spinlock_t *ptl;
struct folio *fault_folio = migrate->fault_page ?
page_folio(migrate->fault_page) : NULL;
pte_t *ptep;
again:
if (pmd_trans_huge(*pmdp) || !pmd_present(*pmdp)) {
int ret = migrate_vma_collect_huge_pmd(pmdp, start, end, walk, fault_folio);
if (ret == -EAGAIN)
goto again;
if (ret == 0)
return 0;
}
ptep = pte_offset_map_lock(mm, pmdp, start, &ptl);
if (!ptep)
goto again;
arch_enter_lazy_mmu_mode();
ptep += (addr - start) / PAGE_SIZE;
for (; addr < end; addr += PAGE_SIZE, ptep++) {
struct dev_pagemap *pgmap;
unsigned long mpfn = 0, pfn;
struct folio *folio;
struct page *page;
softleaf_t entry;
pte_t pte;
pte = ptep_get(ptep);
if (pte_none(pte)) {
if (vma_is_anonymous(vma)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
}
goto next;
}
if (!pte_present(pte)) {
/*
* Only care about unaddressable device page special
* page table entry. Other special swap entries are not
* migratable, and we ignore regular swapped page.
*/
entry = softleaf_from_pte(pte);
if (!softleaf_is_device_private(entry))
goto next;
page = softleaf_to_page(entry);
pgmap = page_pgmap(page);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
pgmap->owner != migrate->pgmap_owner)
goto next;
folio = page_folio(page);
if (folio_test_large(folio)) {
int ret;
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep, ptl);
ret = migrate_vma_split_folio(folio,
migrate->fault_page);
if (ret) {
if (unmapped)
flush_tlb_range(walk->vma, start, end);
return migrate_vma_collect_skip(addr, end, walk);
}
goto again;
}
mpfn = migrate_pfn(page_to_pfn(page)) |
MIGRATE_PFN_MIGRATE;
if (softleaf_is_device_private_write(entry))
mpfn |= MIGRATE_PFN_WRITE;
} else {
pfn = pte_pfn(pte);
if (is_zero_pfn(pfn) &&
(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
mpfn = MIGRATE_PFN_MIGRATE;
migrate->cpages++;
goto next;
}
page = vm_normal_page(migrate->vma, addr, pte);
if (page && !is_zone_device_page(page) &&
!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
goto next;
} else if (page && is_device_coherent_page(page)) {
pgmap = page_pgmap(page);
if (!(migrate->flags &
MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
pgmap->owner != migrate->pgmap_owner)
goto next;
}
folio = page ? page_folio(page) : NULL;
if (folio && folio_test_large(folio)) {
int ret;
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep, ptl);
ret = migrate_vma_split_folio(folio,
migrate->fault_page);
if (ret) {
if (unmapped)
flush_tlb_range(walk->vma, start, end);
return migrate_vma_collect_skip(addr, end, walk);
}
goto again;
}
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
}
if (!page || !page->mapping) {
mpfn = 0;
goto next;
}
/*
* By getting a reference on the folio we pin it and that blocks
* any kind of migration. Side effect is that it "freezes" the
* pte.
*
* We drop this reference after isolating the folio from the lru
* for non device folio (device folio are not on the lru and thus
* can't be dropped from it).
*/
folio = page_folio(page);
folio_get(folio);
/*
* We rely on folio_trylock() to avoid deadlock between
* concurrent migrations where each is waiting on the others
* folio lock. If we can't immediately lock the folio we fail this
* migration as it is only best effort anyway.
*
* If we can lock the folio it's safe to set up a migration entry
* now. In the common case where the folio is mapped once in a
* single process setting up the migration entry now is an
* optimisation to avoid walking the rmap later with
* try_to_migrate().
*/
if (fault_folio == folio || folio_trylock(folio)) {
bool anon_exclusive;
pte_t swp_pte;
flush_cache_page(vma, addr, pte_pfn(pte));
anon_exclusive = folio_test_anon(folio) &&
PageAnonExclusive(page);
if (anon_exclusive) {
pte = ptep_clear_flush(vma, addr, ptep);
if (folio_try_share_anon_rmap_pte(folio, page)) {
set_pte_at(mm, addr, ptep, pte);
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
mpfn = 0;
goto next;
}
} else {
pte = ptep_get_and_clear(mm, addr, ptep);
}
migrate->cpages++;
/* Set the dirty flag on the folio now the pte is gone. */
if (pte_dirty(pte))
folio_mark_dirty(folio);
/* Setup special migration page table entry */
if (mpfn & MIGRATE_PFN_WRITE)
entry = make_writable_migration_entry(
page_to_pfn(page));
else if (anon_exclusive)
entry = make_readable_exclusive_migration_entry(
page_to_pfn(page));
else
entry = make_readable_migration_entry(
page_to_pfn(page));
if (pte_present(pte)) {
if (pte_young(pte))
entry = make_migration_entry_young(entry);
if (pte_dirty(pte))
entry = make_migration_entry_dirty(entry);
}
swp_pte = swp_entry_to_pte(entry);
if (pte_present(pte)) {
if (pte_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
} else {
if (pte_swp_soft_dirty(pte))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_swp_uffd_wp(pte))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
}
set_pte_at(mm, addr, ptep, swp_pte);
/*
* This is like regular unmap: we remove the rmap and
* drop the folio refcount. The folio won't be freed, as
* we took a reference just above.
*/
folio_remove_rmap_pte(folio, page, vma);
folio_put(folio);
if (pte_present(pte))
unmapped++;
} else {
folio_put(folio);
mpfn = 0;
}
next:
migrate->dst[migrate->npages] = 0;
migrate->src[migrate->npages++] = mpfn;
}
/* Only flush the TLB if we actually modified any entries */
if (unmapped)
flush_tlb_range(walk->vma, start, end);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(ptep - 1, ptl);
return 0;
}
static const struct mm_walk_ops migrate_vma_walk_ops = {
.pmd_entry = migrate_vma_collect_pmd,
.pte_hole = migrate_vma_collect_hole,
.walk_lock = PGWALK_RDLOCK,
};
/*
* migrate_vma_collect() - collect pages over a range of virtual addresses
* @migrate: migrate struct containing all migration information
*
* This will walk the CPU page table. For each virtual address backed by a
* valid page, it updates the src array and takes a reference on the page, in
* order to pin the page until we lock it and unmap it.
*/
static void migrate_vma_collect(struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
/*
* Note that the pgmap_owner is passed to the mmu notifier callback so
* that the registered device driver can skip invalidating device
* private page mappings that won't be migrated.
*/
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, migrate->start, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
&migrate_vma_walk_ops, migrate);
mmu_notifier_invalidate_range_end(&range);
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
}
/*
* migrate_vma_check_page() - check if page is pinned or not
* @page: struct page to check
*
* Pinned pages cannot be migrated. This is the same test as in
* folio_migrate_mapping(), except that here we allow migration of a
* ZONE_DEVICE page.
*/
static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
{
struct folio *folio = page_folio(page);
/*
* One extra ref because caller holds an extra reference, either from
* folio_isolate_lru() for a regular folio, or migrate_vma_collect() for
* a device folio.
*/
int extra = 1 + (page == fault_page);
/* Page from ZONE_DEVICE have one extra reference */
if (folio_is_zone_device(folio))
extra++;
/* For file back page */
if (folio_mapping(folio))
extra += 1 + folio_has_private(folio);
if ((folio_ref_count(folio) - extra) > folio_mapcount(folio))
return false;
return true;
}
/*
* Unmaps pages for migration. Returns number of source pfns marked as
* migrating.
*/
static unsigned long migrate_device_unmap(unsigned long *src_pfns,
unsigned long npages,
struct page *fault_page)
{
struct folio *fault_folio = fault_page ?
page_folio(fault_page) : NULL;
unsigned long i, restore = 0;
bool allow_drain = true;
unsigned long unmapped = 0;
lru_add_drain();
for (i = 0; i < npages; ) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
unsigned int nr = 1;
if (!page) {
if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
unmapped++;
goto next;
}
folio = page_folio(page);
nr = folio_nr_pages(folio);
if (nr > 1)
src_pfns[i] |= MIGRATE_PFN_COMPOUND;
/* ZONE_DEVICE folios are not on LRU */
if (!folio_is_zone_device(folio)) {
if (!folio_test_lru(folio) && allow_drain) {
/* Drain CPU's lru cache */
lru_add_drain_all();
allow_drain = false;
}
if (!folio_isolate_lru(folio)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
goto next;
}
/* Drop the reference we took in collect */
folio_put(folio);
}
if (folio_mapped(folio))
try_to_migrate(folio, 0);
if (folio_mapped(folio) ||
!migrate_vma_check_page(page, fault_page)) {
if (!folio_is_zone_device(folio)) {
folio_get(folio);
folio_putback_lru(folio);
}
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
restore++;
goto next;
}
unmapped++;
next:
i += nr;
}
for (i = 0; i < npages && restore; i++) {
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct folio *folio;
if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
continue;
folio = page_folio(page);
remove_migration_ptes(folio, folio, 0);
src_pfns[i] = 0;
if (fault_folio != folio)
folio_unlock(folio);
folio_put(folio);
restore--;
}
return unmapped;
}
/*
* migrate_vma_unmap() - replace page mapping with special migration pte entry
* @migrate: migrate struct containing all migration information
*
* Isolate pages from the LRU and replace mappings (CPU page table pte) with a
* special migration pte entry and check if it has been pinned. Pinned pages are
* restored because we cannot migrate them.
*
* This is the last step before we call the device driver callback to allocate
* destination memory and copy contents of original page over to new page.
*/
static void migrate_vma_unmap(struct migrate_vma *migrate)
{
migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
migrate->fault_page);
}
/**
* migrate_vma_setup() - prepare to migrate a range of memory
* @args: contains the vma, start, and pfns arrays for the migration
*
* Returns: negative errno on failures, 0 when 0 or more pages were migrated
* without an error.
*
* Prepare to migrate a range of memory virtual address range by collecting all
* the pages backing each virtual address in the range, saving them inside the
* src array. Then lock those pages and unmap them. Once the pages are locked
* and unmapped, check whether each page is pinned or not. Pages that aren't
* pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
* corresponding src array entry. Then restores any pages that are pinned, by
* remapping and unlocking those pages.
*
* The caller should then allocate destination memory and copy source memory to
* it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
* flag set). Once these are allocated and copied, the caller must update each
* corresponding entry in the dst array with the pfn value of the destination
* page and with MIGRATE_PFN_VALID. Destination pages must be locked via
* lock_page().
*
* Note that the caller does not have to migrate all the pages that are marked
* with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
* device memory to system memory. If the caller cannot migrate a device page
* back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
* consequences for the userspace process, so it must be avoided if at all
* possible.
*
* For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
* do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
* allowing the caller to allocate device memory for those unbacked virtual
* addresses. For this the caller simply has to allocate device memory and
* properly set the destination entry like for regular migration. Note that
* this can still fail, and thus inside the device driver you must check if the
* migration was successful for those entries after calling migrate_vma_pages(),
* just like for regular migration.
*
* After that, the callers must call migrate_vma_pages() to go over each entry
* in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
* then migrate_vma_pages() to migrate struct page information from the source
* struct page to the destination struct page. If it fails to migrate the
* struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
* src array.
*
* At this point all successfully migrated pages have an entry in the src
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
* array entry with MIGRATE_PFN_VALID flag set.
*
* Once migrate_vma_pages() returns the caller may inspect which pages were
* successfully migrated, and which were not. Successfully migrated pages will
* have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
*
* It is safe to update device page table after migrate_vma_pages() because
* both destination and source page are still locked, and the mmap_lock is held
* in read mode (hence no one can unmap the range being migrated).
*
* Once the caller is done cleaning up things and updating its page table (if it
* chose to do so, this is not an obligation) it finally calls
* migrate_vma_finalize() to update the CPU page table to point to new pages
* for successfully migrated pages or otherwise restore the CPU page table to
* point to the original source pages.
*/
int migrate_vma_setup(struct migrate_vma *args)
{
long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
args->start &= PAGE_MASK;
args->end &= PAGE_MASK;
if (!args->vma || is_vm_hugetlb_page(args->vma) ||
(args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
return -EINVAL;
if (nr_pages <= 0)
return -EINVAL;
if (args->start < args->vma->vm_start ||
args->start >= args->vma->vm_end)
return -EINVAL;
if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
return -EINVAL;
if (!args->src || !args->dst)
return -EINVAL;
if (args->fault_page && !is_device_private_page(args->fault_page))
return -EINVAL;
if (args->fault_page && !PageLocked(args->fault_page))
return -EINVAL;
memset(args->src, 0, sizeof(*args->src) * nr_pages);
args->cpages = 0;
args->npages = 0;
migrate_vma_collect(args);
if (args->cpages)
migrate_vma_unmap(args);
/*
* At this point pages are locked and unmapped, and thus they have
* stable content and can safely be copied to destination memory that
* is allocated by the drivers.
*/
return 0;
}
EXPORT_SYMBOL(migrate_vma_setup);
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
/**
* migrate_vma_insert_huge_pmd_page: Insert a huge folio into @migrate->vma->vm_mm
* at @addr. folio is already allocated as a part of the migration process with
* large page.
*
* @page needs to be initialized and setup after it's allocated. The code bits
* here follow closely the code in __do_huge_pmd_anonymous_page(). This API does
* not support THP zero pages.
*
* @migrate: migrate_vma arguments
* @addr: address where the folio will be inserted
* @page: page to be inserted at @addr
* @src: src pfn which is being migrated
* @pmdp: pointer to the pmd
*/
static int migrate_vma_insert_huge_pmd_page(struct migrate_vma *migrate,
unsigned long addr,
struct page *page,
unsigned long *src,
pmd_t *pmdp)
{
struct vm_area_struct *vma = migrate->vma;
gfp_t gfp = vma_thp_gfp_mask(vma);
struct folio *folio = page_folio(page);
int ret;
vm_fault_t csa_ret;
spinlock_t *ptl;
pgtable_t pgtable;
pmd_t entry;
bool flush = false;
unsigned long i;
VM_WARN_ON_FOLIO(!folio, folio);
VM_WARN_ON_ONCE(!pmd_none(*pmdp) && !is_huge_zero_pmd(*pmdp));
if (!thp_vma_suitable_order(vma, addr, HPAGE_PMD_ORDER))
return -EINVAL;
ret = anon_vma_prepare(vma);
if (ret)
return ret;
folio_set_order(folio, HPAGE_PMD_ORDER);
folio_set_large_rmappable(folio);
if (mem_cgroup_charge(folio, migrate->vma->vm_mm, gfp)) {
count_vm_event(THP_FAULT_FALLBACK);
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
ret = -ENOMEM;
goto abort;
}
__folio_mark_uptodate(folio);
pgtable = pte_alloc_one(vma->vm_mm);
if (unlikely(!pgtable))
goto abort;
if (folio_is_device_private(folio)) {
swp_entry_t swp_entry;
if (vma->vm_flags & VM_WRITE)
swp_entry = make_writable_device_private_entry(
page_to_pfn(page));
else
swp_entry = make_readable_device_private_entry(
page_to_pfn(page));
entry = swp_entry_to_pmd(swp_entry);
} else {
if (folio_is_zone_device(folio) &&
!folio_is_device_coherent(folio)) {
goto abort;
}
entry = folio_mk_pmd(folio, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pmd_mkwrite(pmd_mkdirty(entry), vma);
}
ptl = pmd_lock(vma->vm_mm, pmdp);
csa_ret = check_stable_address_space(vma->vm_mm);
if (csa_ret)
goto abort;
/*
* Check for userfaultfd but do not deliver the fault. Instead,
* just back off.
*/
if (userfaultfd_missing(vma))
goto unlock_abort;
if (!pmd_none(*pmdp)) {
if (!is_huge_zero_pmd(*pmdp))
goto unlock_abort;
flush = true;
} else if (!pmd_none(*pmdp))
goto unlock_abort;
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
if (!folio_is_zone_device(folio))
folio_add_lru_vma(folio, vma);
folio_get(folio);
if (flush) {
pte_free(vma->vm_mm, pgtable);
flush_cache_page(vma, addr, addr + HPAGE_PMD_SIZE);
pmdp_invalidate(vma, addr, pmdp);
} else {
pgtable_trans_huge_deposit(vma->vm_mm, pmdp, pgtable);
mm_inc_nr_ptes(vma->vm_mm);
}
set_pmd_at(vma->vm_mm, addr, pmdp, entry);
update_mmu_cache_pmd(vma, addr, pmdp);
spin_unlock(ptl);
count_vm_event(THP_FAULT_ALLOC);
count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
return 0;
unlock_abort:
spin_unlock(ptl);
abort:
for (i = 0; i < HPAGE_PMD_NR; i++)
src[i] &= ~MIGRATE_PFN_MIGRATE;
return 0;
}
static int migrate_vma_split_unmapped_folio(struct migrate_vma *migrate,
unsigned long idx, unsigned long addr,
struct folio *folio)
{
unsigned long i;
unsigned long pfn;
unsigned long flags;
int ret = 0;
folio_get(folio);
split_huge_pmd_address(migrate->vma, addr, true);
ret = folio_split_unmapped(folio, 0);
if (ret)
return ret;
migrate->src[idx] &= ~MIGRATE_PFN_COMPOUND;
flags = migrate->src[idx] & ((1UL << MIGRATE_PFN_SHIFT) - 1);
pfn = migrate->src[idx] >> MIGRATE_PFN_SHIFT;
for (i = 1; i < HPAGE_PMD_NR; i++)
migrate->src[i+idx] = migrate_pfn(pfn + i) | flags;
return ret;
}
#else /* !CONFIG_ARCH_ENABLE_THP_MIGRATION */
static int migrate_vma_insert_huge_pmd_page(struct migrate_vma *migrate,
unsigned long addr,
struct page *page,
unsigned long *src,
pmd_t *pmdp)
{
return 0;
}
static int migrate_vma_split_unmapped_folio(struct migrate_vma *migrate,
unsigned long idx, unsigned long addr,
struct folio *folio)
{
return 0;
}
#endif
static unsigned long migrate_vma_nr_pages(unsigned long *src)
{
unsigned long nr = 1;
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
if (*src & MIGRATE_PFN_COMPOUND)
nr = HPAGE_PMD_NR;
#else
if (*src & MIGRATE_PFN_COMPOUND)
VM_WARN_ON_ONCE(true);
#endif
return nr;
}
/*
* This code closely matches the code in:
* __handle_mm_fault()
* handle_pte_fault()
* do_anonymous_page()
* to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
* private or coherent page.
*/
static void migrate_vma_insert_page(struct migrate_vma *migrate,
unsigned long addr,
unsigned long *dst,
unsigned long *src)
{
struct page *page = migrate_pfn_to_page(*dst);
struct folio *folio = page_folio(page);
struct vm_area_struct *vma = migrate->vma;
struct mm_struct *mm = vma->vm_mm;
bool flush = false;
spinlock_t *ptl;
pte_t entry;
pgd_t *pgdp;
p4d_t *p4dp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
pte_t orig_pte;
/* Only allow populating anonymous memory */
if (!vma_is_anonymous(vma))
goto abort;
pgdp = pgd_offset(mm, addr);
p4dp = p4d_alloc(mm, pgdp, addr);
if (!p4dp)
goto abort;
pudp = pud_alloc(mm, p4dp, addr);
if (!pudp)
goto abort;
pmdp = pmd_alloc(mm, pudp, addr);
if (!pmdp)
goto abort;
if (thp_migration_supported() && (*dst & MIGRATE_PFN_COMPOUND)) {
int ret = migrate_vma_insert_huge_pmd_page(migrate, addr, page,
src, pmdp);
if (ret)
goto abort;
return;
}
if (!pmd_none(*pmdp)) {
if (pmd_trans_huge(*pmdp)) {
if (!is_huge_zero_pmd(*pmdp))
goto abort;
split_huge_pmd(vma, pmdp, addr);
} else if (pmd_leaf(*pmdp))
goto abort;
}
if (pte_alloc(mm, pmdp))
goto abort;
if (unlikely(anon_vma_prepare(vma)))
goto abort;
if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
goto abort;
/*
* The memory barrier inside __folio_mark_uptodate makes sure that
* preceding stores to the folio contents become visible before
* the set_pte_at() write.
*/
__folio_mark_uptodate(folio);
if (folio_is_device_private(folio)) {
swp_entry_t swp_entry;
if (vma->vm_flags & VM_WRITE)
swp_entry = make_writable_device_private_entry(
page_to_pfn(page));
else
swp_entry = make_readable_device_private_entry(
page_to_pfn(page));
entry = swp_entry_to_pte(swp_entry);
} else {
if (folio_is_zone_device(folio) &&
!folio_is_device_coherent(folio)) {
pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
goto abort;
}
entry = mk_pte(page, vma->vm_page_prot);
if (vma->vm_flags & VM_WRITE)
entry = pte_mkwrite(pte_mkdirty(entry), vma);
}
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
if (!ptep)
goto abort;
orig_pte = ptep_get(ptep);
if (check_stable_address_space(mm))
goto unlock_abort;
if (pte_present(orig_pte)) {
unsigned long pfn = pte_pfn(orig_pte);
if (!is_zero_pfn(pfn))
goto unlock_abort;
flush = true;
} else if (!pte_none(orig_pte))
goto unlock_abort;
/*
* Check for userfaultfd but do not deliver the fault. Instead,
* just back off.
*/
if (userfaultfd_missing(vma))
goto unlock_abort;
inc_mm_counter(mm, MM_ANONPAGES);
folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
if (!folio_is_zone_device(folio))
folio_add_lru_vma(folio, vma);
folio_get(folio);
if (flush) {
flush_cache_page(vma, addr, pte_pfn(orig_pte));
ptep_clear_flush(vma, addr, ptep);
}
set_pte_at(mm, addr, ptep, entry);
update_mmu_cache(vma, addr, ptep);
pte_unmap_unlock(ptep, ptl);
*src = MIGRATE_PFN_MIGRATE;
return;
unlock_abort:
pte_unmap_unlock(ptep, ptl);
abort:
*src &= ~MIGRATE_PFN_MIGRATE;
}
static void __migrate_device_pages(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages,
struct migrate_vma *migrate)
{
struct mmu_notifier_range range;
unsigned long i, j;
bool notified = false;
unsigned long addr;
for (i = 0; i < npages; ) {
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
struct address_space *mapping;
struct folio *newfolio, *folio;
int r, extra_cnt = 0;
unsigned long nr = 1;
if (!newpage) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
goto next;
}
if (!page) {
unsigned long addr;
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
goto next;
/*
* The only time there is no vma is when called from
* migrate_device_coherent_folio(). However this isn't
* called if the page could not be unmapped.
*/
VM_BUG_ON(!migrate);
addr = migrate->start + i*PAGE_SIZE;
if (!notified) {
notified = true;
mmu_notifier_range_init_owner(&range,
MMU_NOTIFY_MIGRATE, 0,
migrate->vma->vm_mm, addr, migrate->end,
migrate->pgmap_owner);
mmu_notifier_invalidate_range_start(&range);
}
if ((src_pfns[i] & MIGRATE_PFN_COMPOUND) &&
(!(dst_pfns[i] & MIGRATE_PFN_COMPOUND))) {
nr = migrate_vma_nr_pages(&src_pfns[i]);
src_pfns[i] &= ~MIGRATE_PFN_COMPOUND;
} else {
nr = 1;
}
for (j = 0; j < nr && i + j < npages; j++) {
src_pfns[i+j] |= MIGRATE_PFN_MIGRATE;
migrate_vma_insert_page(migrate,
addr + j * PAGE_SIZE,
&dst_pfns[i+j], &src_pfns[i+j]);
}
goto next;
}
newfolio = page_folio(newpage);
folio = page_folio(page);
mapping = folio_mapping(folio);
/*
* If THP migration is enabled, check if both src and dst
* can migrate large pages
*/
if (thp_migration_supported()) {
if ((src_pfns[i] & MIGRATE_PFN_MIGRATE) &&
(src_pfns[i] & MIGRATE_PFN_COMPOUND) &&
!(dst_pfns[i] & MIGRATE_PFN_COMPOUND)) {
if (!migrate) {
src_pfns[i] &= ~(MIGRATE_PFN_MIGRATE |
MIGRATE_PFN_COMPOUND);
goto next;
}
nr = 1 << folio_order(folio);
addr = migrate->start + i * PAGE_SIZE;
if (migrate_vma_split_unmapped_folio(migrate, i, addr, folio)) {
src_pfns[i] &= ~(MIGRATE_PFN_MIGRATE |
MIGRATE_PFN_COMPOUND);
goto next;
}
} else if ((src_pfns[i] & MIGRATE_PFN_MIGRATE) &&
(dst_pfns[i] & MIGRATE_PFN_COMPOUND) &&
!(src_pfns[i] & MIGRATE_PFN_COMPOUND)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
}
}
if (folio_is_device_private(newfolio) ||
folio_is_device_coherent(newfolio)) {
if (mapping) {
/*
* For now only support anonymous memory migrating to
* device private or coherent memory.
*
* Try to get rid of swap cache if possible.
*/
if (!folio_test_anon(folio) ||
!folio_free_swap(folio)) {
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
goto next;
}
}
} else if (folio_is_zone_device(newfolio)) {
/*
* Other types of ZONE_DEVICE page are not supported.
*/
src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
goto next;
}
BUG_ON(folio_test_writeback(folio));
if (migrate && migrate->fault_page == page)
extra_cnt = 1;
for (j = 0; j < nr && i + j < npages; j++) {
folio = page_folio(migrate_pfn_to_page(src_pfns[i+j]));
newfolio = page_folio(migrate_pfn_to_page(dst_pfns[i+j]));
r = folio_migrate_mapping(mapping, newfolio, folio, extra_cnt);
if (r)
src_pfns[i+j] &= ~MIGRATE_PFN_MIGRATE;
else
folio_migrate_flags(newfolio, folio);
}
next:
i += nr;
}
if (notified)
mmu_notifier_invalidate_range_end(&range);
}
/**
* migrate_device_pages() - migrate meta-data from src page to dst page
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Equivalent to migrate_vma_pages(). This is called to migrate struct page
* meta-data from source struct page to destination.
*/
void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
unsigned long npages)
{
__migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_pages);
/**
* migrate_vma_pages() - migrate meta-data from src page to dst page
* @migrate: migrate struct containing all migration information
*
* This migrates struct page meta-data from source struct page to destination
* struct page. This effectively finishes the migration from source page to the
* destination page.
*/
void migrate_vma_pages(struct migrate_vma *migrate)
{
__migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
}
EXPORT_SYMBOL(migrate_vma_pages);
static void __migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns,
unsigned long npages,
struct page *fault_page)
{
struct folio *fault_folio = fault_page ?
page_folio(fault_page) : NULL;
unsigned long i;
for (i = 0; i < npages; i++) {
struct folio *dst = NULL, *src = NULL;
struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
struct page *page = migrate_pfn_to_page(src_pfns[i]);
if (newpage)
dst = page_folio(newpage);
if (!page) {
if (dst) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
continue;
}
src = page_folio(page);
if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !dst) {
if (dst) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
dst = src;
}
if (!folio_is_zone_device(dst))
folio_add_lru(dst);
remove_migration_ptes(src, dst, 0);
if (fault_folio != src)
folio_unlock(src);
folio_put(src);
if (dst != src) {
WARN_ON_ONCE(fault_folio == dst);
folio_unlock(dst);
folio_put(dst);
}
}
}
/*
* migrate_device_finalize() - complete page migration
* @src_pfns: src_pfns returned from migrate_device_range()
* @dst_pfns: array of pfns allocated by the driver to migrate memory to
* @npages: number of pages in the range
*
* Completes migration of the page by removing special migration entries.
* Drivers must ensure copying of page data is complete and visible to the CPU
* before calling this.
*/
void migrate_device_finalize(unsigned long *src_pfns,
unsigned long *dst_pfns, unsigned long npages)
{
return __migrate_device_finalize(src_pfns, dst_pfns, npages, NULL);
}
EXPORT_SYMBOL(migrate_device_finalize);
/**
* migrate_vma_finalize() - restore CPU page table entry
* @migrate: migrate struct containing all migration information
*
* This replaces the special migration pte entry with either a mapping to the
* new page if migration was successful for that page, or to the original page
* otherwise.
*
* This also unlocks the pages and puts them back on the lru, or drops the extra
* refcount, for device pages.
*/
void migrate_vma_finalize(struct migrate_vma *migrate)
{
__migrate_device_finalize(migrate->src, migrate->dst, migrate->npages,
migrate->fault_page);
}
EXPORT_SYMBOL(migrate_vma_finalize);
static unsigned long migrate_device_pfn_lock(unsigned long pfn)
{
struct folio *folio;
folio = folio_get_nontail_page(pfn_to_page(pfn));
if (!folio)
return 0;
if (!folio_trylock(folio)) {
folio_put(folio);
return 0;
}
return migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
}
/**
* migrate_device_range() - migrate device private pfns to normal memory.
* @src_pfns: array large enough to hold migrating source device private pfns.
* @start: starting pfn in the range to migrate.
* @npages: number of pages to migrate.
*
* migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
* instead of looking up pages based on virtual address mappings a range of
* device pfns that should be migrated to system memory is used instead.
*
* This is useful when a driver needs to free device memory but doesn't know the
* virtual mappings of every page that may be in device memory. For example this
* is often the case when a driver is being unloaded or unbound from a device.
*
* Like migrate_vma_setup() this function will take a reference and lock any
* migrating pages that aren't free before unmapping them. Drivers may then
* allocate destination pages and start copying data from the device to CPU
* memory before calling migrate_device_pages().
*/
int migrate_device_range(unsigned long *src_pfns, unsigned long start,
unsigned long npages)
{
unsigned long i, j, pfn;
for (pfn = start, i = 0; i < npages; pfn++, i++) {
struct page *page = pfn_to_page(pfn);
struct folio *folio = page_folio(page);
unsigned int nr = 1;
src_pfns[i] = migrate_device_pfn_lock(pfn);
nr = folio_nr_pages(folio);
if (nr > 1) {
src_pfns[i] |= MIGRATE_PFN_COMPOUND;
for (j = 1; j < nr; j++)
src_pfns[i+j] = 0;
i += j - 1;
pfn += j - 1;
}
}
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_range);
/**
* migrate_device_pfns() - migrate device private pfns to normal memory.
* @src_pfns: pre-popluated array of source device private pfns to migrate.
* @npages: number of pages to migrate.
*
* Similar to migrate_device_range() but supports non-contiguous pre-popluated
* array of device pages to migrate.
*/
int migrate_device_pfns(unsigned long *src_pfns, unsigned long npages)
{
unsigned long i, j;
for (i = 0; i < npages; i++) {
struct page *page = pfn_to_page(src_pfns[i]);
struct folio *folio = page_folio(page);
unsigned int nr = 1;
src_pfns[i] = migrate_device_pfn_lock(src_pfns[i]);
nr = folio_nr_pages(folio);
if (nr > 1) {
src_pfns[i] |= MIGRATE_PFN_COMPOUND;
for (j = 1; j < nr; j++)
src_pfns[i+j] = 0;
i += j - 1;
}
}
migrate_device_unmap(src_pfns, npages, NULL);
return 0;
}
EXPORT_SYMBOL(migrate_device_pfns);
/*
* Migrate a device coherent folio back to normal memory. The caller should have
* a reference on folio which will be copied to the new folio if migration is
* successful or dropped on failure.
*/
int migrate_device_coherent_folio(struct folio *folio)
{
unsigned long src_pfn, dst_pfn = 0;
struct folio *dfolio;
WARN_ON_ONCE(folio_test_large(folio));
folio_lock(folio);
src_pfn = migrate_pfn(folio_pfn(folio)) | MIGRATE_PFN_MIGRATE;
/*
* We don't have a VMA and don't need to walk the page tables to find
* the source folio. So call migrate_vma_unmap() directly to unmap the
* folio as migrate_vma_setup() will fail if args.vma == NULL.
*/
migrate_device_unmap(&src_pfn, 1, NULL);
if (!(src_pfn & MIGRATE_PFN_MIGRATE))
return -EBUSY;
dfolio = folio_alloc(GFP_USER | __GFP_NOWARN, 0);
if (dfolio) {
folio_lock(dfolio);
dst_pfn = migrate_pfn(folio_pfn(dfolio));
}
migrate_device_pages(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
folio_copy(dfolio, folio);
migrate_device_finalize(&src_pfn, &dst_pfn, 1);
if (src_pfn & MIGRATE_PFN_MIGRATE)
return 0;
return -EBUSY;
}
|