1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
*
* Based on former do_div() implementation from asm-parisc/div64.h:
* Copyright (C) 1999 Hewlett-Packard Co
* Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
*
*
* Generic C version of 64bit/32bit division and modulo, with
* 64bit result and 32bit remainder.
*
* The fast case for (n>>32 == 0) is handled inline by do_div().
*
* Code generated for this function might be very inefficient
* for some CPUs. __div64_32() can be overridden by linking arch-specific
* assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
* or by defining a preprocessor macro in arch/include/asm/div64.h.
*/
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/math.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/log2.h>
/* Not needed on 64bit architectures */
#if BITS_PER_LONG == 32
#ifndef __div64_32
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
{
uint64_t rem = *n;
uint64_t b = base;
uint64_t res, d = 1;
uint32_t high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (uint64_t) high << 32;
rem -= (uint64_t) (high*base) << 32;
}
while ((int64_t)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
EXPORT_SYMBOL(__div64_32);
#endif
#ifndef div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
u64 quotient;
if (dividend < 0) {
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
*remainder = -*remainder;
if (divisor > 0)
quotient = -quotient;
} else {
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
if (divisor < 0)
quotient = -quotient;
}
return quotient;
}
EXPORT_SYMBOL(div_s64_rem);
#endif
/*
* div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
* @dividend: 64bit dividend
* @divisor: 64bit divisor
* @remainder: 64bit remainder
*
* This implementation is a comparable to algorithm used by div64_u64.
* But this operation, which includes math for calculating the remainder,
* is kept distinct to avoid slowing down the div64_u64 operation on 32bit
* systems.
*/
#ifndef div64_u64_rem
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
u32 rem32;
quot = div_u64_rem(dividend, divisor, &rem32);
*remainder = rem32;
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
*remainder = dividend - quot * divisor;
if (*remainder >= divisor) {
quot++;
*remainder -= divisor;
}
}
return quot;
}
EXPORT_SYMBOL(div64_u64_rem);
#endif
/*
* div64_u64 - unsigned 64bit divide with 64bit divisor
* @dividend: 64bit dividend
* @divisor: 64bit divisor
*
* This implementation is a modified version of the algorithm proposed
* by the book 'Hacker's Delight'. The original source and full proof
* can be found here and is available for use without restriction.
*
* 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
*/
#ifndef div64_u64
u64 div64_u64(u64 dividend, u64 divisor)
{
u32 high = divisor >> 32;
u64 quot;
if (high == 0) {
quot = div_u64(dividend, divisor);
} else {
int n = fls(high);
quot = div_u64(dividend >> n, divisor >> n);
if (quot != 0)
quot--;
if ((dividend - quot * divisor) >= divisor)
quot++;
}
return quot;
}
EXPORT_SYMBOL(div64_u64);
#endif
#ifndef div64_s64
s64 div64_s64(s64 dividend, s64 divisor)
{
s64 quot, t;
quot = div64_u64(abs(dividend), abs(divisor));
t = (dividend ^ divisor) >> 63;
return (quot ^ t) - t;
}
EXPORT_SYMBOL(div64_s64);
#endif
#endif /* BITS_PER_LONG == 32 */
/*
* Iterative div/mod for use when dividend is not expected to be much
* bigger than divisor.
*/
#ifndef iter_div_u64_rem
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
{
return __iter_div_u64_rem(dividend, divisor, remainder);
}
EXPORT_SYMBOL(iter_div_u64_rem);
#endif
#if !defined(mul_u64_add_u64_div_u64) || defined(test_mul_u64_add_u64_div_u64)
#define mul_add(a, b, c) add_u64_u32(mul_u32_u32(a, b), c)
#if defined(__SIZEOF_INT128__) && !defined(test_mul_u64_add_u64_div_u64)
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* native 64x64=128 bits multiplication */
u128 prod = (u128)a * b + c;
*p_lo = prod;
return prod >> 64;
}
#else
static inline u64 mul_u64_u64_add_u64(u64 *p_lo, u64 a, u64 b, u64 c)
{
/* perform a 64x64=128 bits multiplication in 32bit chunks */
u64 x, y, z;
/* Since (x-1)(x-1) + 2(x-1) == x.x - 1 two u32 can be added to a u64 */
x = mul_add(a, b, c);
y = mul_add(a, b >> 32, c >> 32);
y = add_u64_u32(y, x >> 32);
z = mul_add(a >> 32, b >> 32, y >> 32);
y = mul_add(a >> 32, b, y);
*p_lo = (y << 32) + (u32)x;
return add_u64_u32(z, y >> 32);
}
#endif
#ifndef BITS_PER_ITER
#define BITS_PER_ITER (__LONG_WIDTH__ >= 64 ? 32 : 16)
#endif
#if BITS_PER_ITER == 32
#define mul_u64_long_add_u64(p_lo, a, b, c) mul_u64_u64_add_u64(p_lo, a, b, c)
#define add_u64_long(a, b) ((a) + (b))
#else
#undef BITS_PER_ITER
#define BITS_PER_ITER 16
static inline u32 mul_u64_long_add_u64(u64 *p_lo, u64 a, u32 b, u64 c)
{
u64 n_lo = mul_add(a, b, c);
u64 n_med = mul_add(a >> 32, b, c >> 32);
n_med = add_u64_u32(n_med, n_lo >> 32);
*p_lo = n_med << 32 | (u32)n_lo;
return n_med >> 32;
}
#define add_u64_long(a, b) add_u64_u32(a, b)
#endif
u64 mul_u64_add_u64_div_u64(u64 a, u64 b, u64 c, u64 d)
{
unsigned long d_msig, q_digit;
unsigned int reps, d_z_hi;
u64 quotient, n_lo, n_hi;
u32 overflow;
n_hi = mul_u64_u64_add_u64(&n_lo, a, b, c);
if (!n_hi)
return div64_u64(n_lo, d);
if (unlikely(n_hi >= d)) {
/* trigger runtime exception if divisor is zero */
if (d == 0) {
unsigned long zero = 0;
OPTIMIZER_HIDE_VAR(zero);
return ~0UL/zero;
}
/* overflow: result is unrepresentable in a u64 */
return ~0ULL;
}
/* Left align the divisor, shifting the dividend to match */
d_z_hi = __builtin_clzll(d);
if (d_z_hi) {
d <<= d_z_hi;
n_hi = n_hi << d_z_hi | n_lo >> (64 - d_z_hi);
n_lo <<= d_z_hi;
}
reps = 64 / BITS_PER_ITER;
/* Optimise loop count for small dividends */
if (!(u32)(n_hi >> 32)) {
reps -= 32 / BITS_PER_ITER;
n_hi = n_hi << 32 | n_lo >> 32;
n_lo <<= 32;
}
#if BITS_PER_ITER == 16
if (!(u32)(n_hi >> 48)) {
reps--;
n_hi = add_u64_u32(n_hi << 16, n_lo >> 48);
n_lo <<= 16;
}
#endif
/* Invert the dividend so we can use add instead of subtract. */
n_lo = ~n_lo;
n_hi = ~n_hi;
/*
* Get the most significant BITS_PER_ITER bits of the divisor.
* This is used to get a low 'guestimate' of the quotient digit.
*/
d_msig = (d >> (64 - BITS_PER_ITER)) + 1;
/*
* Now do a 'long division' with BITS_PER_ITER bit 'digits'.
* The 'guess' quotient digit can be low and BITS_PER_ITER+1 bits.
* The worst case is dividing ~0 by 0x8000 which requires two subtracts.
*/
quotient = 0;
while (reps--) {
q_digit = (unsigned long)(~n_hi >> (64 - 2 * BITS_PER_ITER)) / d_msig;
/* Shift 'n' left to align with the product q_digit * d */
overflow = n_hi >> (64 - BITS_PER_ITER);
n_hi = add_u64_u32(n_hi << BITS_PER_ITER, n_lo >> (64 - BITS_PER_ITER));
n_lo <<= BITS_PER_ITER;
/* Add product to negated divisor */
overflow += mul_u64_long_add_u64(&n_hi, d, q_digit, n_hi);
/* Adjust for the q_digit 'guestimate' being low */
while (overflow < 0xffffffff >> (32 - BITS_PER_ITER)) {
q_digit++;
n_hi += d;
overflow += n_hi < d;
}
quotient = add_u64_long(quotient << BITS_PER_ITER, q_digit);
}
/*
* The above only ensures the remainder doesn't overflow,
* it can still be possible to add (aka subtract) another copy
* of the divisor.
*/
if ((n_hi + d) > n_hi)
quotient++;
return quotient;
}
#if !defined(test_mul_u64_add_u64_div_u64)
EXPORT_SYMBOL(mul_u64_add_u64_div_u64);
#endif
#endif
|