1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
|
// SPDX-License-Identifier: GPL-2.0
//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
//! usable for value representation.
use core::{
cmp,
fmt,
ops::{
self,
Deref, //
}, //,
};
use kernel::{
num::Integer,
prelude::*, //
};
/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
///
/// `expr` must be of type `type`, or the result will be incorrect.
///
/// Can be used in const context.
macro_rules! fits_within {
($value:expr, $type:ty, $n:expr) => {{
let shift: u32 = <$type>::BITS - $n;
// `value` fits within `$n` bits if shifting it left by the number of unused bits, then
// right by the same number, doesn't change it.
//
// This method has the benefit of working for both unsigned and signed values.
($value << shift) >> shift == $value
}};
}
/// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
#[inline(always)]
fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
fits_within!(value, T, num_bits)
}
/// An integer value that requires only the `N` less significant bits of the wrapped type to be
/// encoded.
///
/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
/// a narrower range, which provides guarantees that can be useful when working with in e.g.
/// bitfields.
///
/// # Invariants
///
/// - `N` is greater than `0`.
/// - `N` is less than or equal to `T::BITS`.
/// - Stored values can be represented with at most `N` bits.
///
/// # Examples
///
/// The preferred way to create values is through constants and the [`Bounded::new`] family of
/// constructors, as they trigger a build error if the type invariants cannot be withheld.
///
/// ```
/// use kernel::num::Bounded;
///
/// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
/// // The value `15` is statically validated to fit that constraint at build time.
/// let v = Bounded::<u8, 4>::new::<15>();
/// assert_eq!(v.get(), 15);
///
/// // Same using signed values.
/// let v = Bounded::<i8, 4>::new::<-8>();
/// assert_eq!(v.get(), -8);
///
/// // This doesn't build: a `u8` is smaller than the requested 9 bits.
/// // let _ = Bounded::<u8, 9>::new::<10>();
///
/// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
/// // let _ = Bounded::<i8, 4>::new::<8>();
/// ```
///
/// Values can also be validated at runtime with [`Bounded::try_new`].
///
/// ```
/// use kernel::num::Bounded;
///
/// // This succeeds because `15` can be represented with 4 unsigned bits.
/// assert!(Bounded::<u8, 4>::try_new(15).is_some());
///
/// // This fails because `16` cannot be represented with 4 unsigned bits.
/// assert!(Bounded::<u8, 4>::try_new(16).is_none());
/// ```
///
/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
/// should be used with caution, on simple expressions only.
///
/// ```
/// use kernel::num::Bounded;
/// # fn some_number() -> u32 { 0xffffffff }
///
/// // Here the compiler can infer from the mask that the type invariants are not violated, even
/// // though the value returned by `some_number` is not statically known.
/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
/// ```
///
/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
/// type, regardless of their number of valid bits.
///
/// ```
/// use kernel::num::Bounded;
///
/// let v1 = Bounded::<u32, 8>::new::<4>();
/// let v2 = Bounded::<u32, 4>::new::<15>();
///
/// assert!(v1 != v2);
/// assert!(v1 < v2);
/// assert_eq!(v1 + v2, 19);
/// assert_eq!(v2 % v1, 3);
/// ```
///
/// These operations are also supported between a [`Bounded`] and its backing type.
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u8, 4>::new::<15>();
///
/// assert!(v == 15);
/// assert!(v > 12);
/// assert_eq!(v + 5, 20);
/// assert_eq!(v / 3, 5);
/// ```
///
/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 12>::new::<127>();
///
/// // Changes backing type from `u32` to `u16`.
/// let _: Bounded<u16, 12> = v.cast();
///
/// // This does not build, as `u8` is smaller than 12 bits.
/// // let _: Bounded<u8, 12> = v.cast();
///
/// // We can safely extend the number of bits...
/// let _ = v.extend::<15>();
///
/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
/// // let _ = v.extend::<33>();
///
/// // Reducing the number of bits is validated at runtime. This works because `127` can be
/// // represented with 8 bits.
/// assert!(v.try_shrink::<8>().is_some());
///
/// // ... but not with 6, so this fails.
/// assert!(v.try_shrink::<6>().is_none());
/// ```
///
/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
///
/// ```
/// use kernel::num::Bounded;
///
/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
/// let v = Bounded::<u32, 8>::from(128u8);
/// assert_eq!(v.get(), 128);
///
/// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
/// let v = Bounded::<i32, 8>::from(-128i8);
/// assert_eq!(v.get(), -128);
///
/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
/// // `u8` (regardless of the passed value).
/// // let _ = Bounded::<u32, 6>::from(10u8);
///
/// // Booleans can be converted into single-bit `Bounded`s.
///
/// let v = Bounded::<u64, 1>::from(false);
/// assert_eq!(v.get(), 0);
///
/// let v = Bounded::<u64, 1>::from(true);
/// assert_eq!(v.get(), 1);
/// ```
///
/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
/// dependent on the number of bits used for value representation, not on the backing type.
///
/// ```
/// use kernel::num::Bounded;
///
/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
/// // be converted to a `u8`.
/// let v = Bounded::<u32, 6>::new::<63>();
/// assert_eq!(u8::from(v), 63);
///
/// // Same using signed values.
/// let v = Bounded::<i32, 8>::new::<-128>();
/// assert_eq!(i8::from(v), -128);
///
/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
/// // contained value).
/// let _v = Bounded::<u32, 10>::new::<10>();
/// // assert_eq!(u8::from(_v), 10);
///
/// // Single-bit `Bounded`s can be converted into a boolean.
/// let v = Bounded::<u8, 1>::new::<1>();
/// assert_eq!(bool::from(v), true);
///
/// let v = Bounded::<u8, 1>::new::<0>();
/// assert_eq!(bool::from(v), false);
/// ```
///
/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
/// [`TryIntoBounded`] trait.
///
/// ```
/// use kernel::num::{Bounded, TryIntoBounded};
///
/// // Succeeds because `128` fits into 8 bits.
/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
/// assert_eq!(v.as_deref().copied(), Some(128));
///
/// // Fails because `128` doesn't fits into 6 bits.
/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
/// assert_eq!(v, None);
/// ```
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Default, Hash)]
pub struct Bounded<T: Integer, const N: u32>(T);
/// Validating the value as a const expression cannot be done as a regular method, as the
/// arithmetic operations we rely on to check the bounds are not const. Thus, implement
/// [`Bounded::new`] using a macro.
macro_rules! impl_const_new {
($($type:ty)*) => {
$(
impl<const N: u32> Bounded<$type, N> {
/// Creates a [`Bounded`] for the constant `VALUE`.
///
/// Fails at build time if `VALUE` cannot be represented with `N` bits.
///
/// This method should be preferred to [`Self::from_expr`] whenever possible.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
#[doc = ::core::concat!(
"let v = Bounded::<",
::core::stringify!($type),
", 4>::new::<7>();")]
/// assert_eq!(v.get(), 7);
/// ```
pub const fn new<const VALUE: $type>() -> Self {
// Statically assert that `VALUE` fits within the set number of bits.
const {
assert!(fits_within!(VALUE, $type, N));
}
// INVARIANT: `fits_within` confirmed that `VALUE` can be represented within
// `N` bits.
Self::__new(VALUE)
}
}
)*
};
}
impl_const_new!(
u8 u16 u32 u64 usize
i8 i16 i32 i64 isize
);
impl<T, const N: u32> Bounded<T, N>
where
T: Integer,
{
/// Private constructor enforcing the type invariants.
///
/// All instances of [`Bounded`] must be created through this method as it enforces most of the
/// type invariants.
///
/// The caller remains responsible for checking, either statically or dynamically, that `value`
/// can be represented as a `T` using at most `N` bits.
const fn __new(value: T) -> Self {
// Enforce the type invariants.
const {
// `N` cannot be zero.
assert!(N != 0);
// The backing type is at least as large as `N` bits.
assert!(N <= T::BITS);
}
Self(value)
}
/// Attempts to turn `value` into a `Bounded` using `N` bits.
///
/// Returns [`None`] if `value` doesn't fit within `N` bits.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u8, 1>::try_new(1);
/// assert_eq!(v.as_deref().copied(), Some(1));
///
/// let v = Bounded::<i8, 4>::try_new(-2);
/// assert_eq!(v.as_deref().copied(), Some(-2));
///
/// // `0x1ff` doesn't fit into 8 unsigned bits.
/// let v = Bounded::<u32, 8>::try_new(0x1ff);
/// assert_eq!(v, None);
///
/// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
/// // limits.
/// let v = Bounded::<i8, 4>::try_new(-8);
/// assert_eq!(v.map(Bounded::get), Some(-8));
/// let v = Bounded::<i8, 4>::try_new(-9);
/// assert_eq!(v, None);
/// let v = Bounded::<i8, 4>::try_new(7);
/// assert_eq!(v.map(Bounded::get), Some(7));
/// let v = Bounded::<i8, 4>::try_new(8);
/// assert_eq!(v, None);
/// ```
pub fn try_new(value: T) -> Option<Self> {
fits_within(value, N).then(|| {
// INVARIANT: `fits_within` confirmed that `value` can be represented within `N` bits.
Self::__new(value)
})
}
/// Checks that `expr` is valid for this type at compile-time and build a new value.
///
/// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
/// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
/// use the fallible [`Self::try_new`] instead.
///
/// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
/// constructors whenever possible as they statically validate the value instead of relying on
/// compiler optimizations.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
/// # fn some_number() -> u32 { 0xffffffff }
///
/// // Some undefined number.
/// let v: u32 = some_number();
///
/// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
/// // let _ = Bounded::<u32, 4>::from_expr(v);
///
/// // ... but this works as the compiler can assert the range from the mask.
/// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
///
/// // These expressions are simple enough to be proven correct, but since they are static the
/// // `new` constructor should be preferred.
/// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
/// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
/// ```
#[inline(always)]
pub fn from_expr(expr: T) -> Self {
crate::build_assert!(
fits_within(expr, N),
"Requested value larger than maximal representable value."
);
// INVARIANT: `fits_within` confirmed that `expr` can be represented within `N` bits.
Self::__new(expr)
}
/// Returns the wrapped value as the backing type.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 4>::new::<7>();
/// assert_eq!(v.get(), 7u32);
/// ```
pub fn get(self) -> T {
*self.deref()
}
/// Increases the number of bits usable for `self`.
///
/// This operation cannot fail.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 4>::new::<7>();
/// let larger_v = v.extend::<12>();
/// // The contained values are equal even though `larger_v` has a bigger capacity.
/// assert_eq!(larger_v, v);
/// ```
pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
const {
assert!(
M >= N,
"Requested number of bits is less than the current representation."
);
}
// INVARIANT: The value did fit within `N` bits, so it will all the more fit within
// the larger `M` bits.
Bounded::__new(self.0)
}
/// Attempts to shrink the number of bits usable for `self`.
///
/// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 12>::new::<7>();
///
/// // `7` can be represented using 3 unsigned bits...
/// let smaller_v = v.try_shrink::<3>();
/// assert_eq!(smaller_v.as_deref().copied(), Some(7));
///
/// // ... but doesn't fit within `2` bits.
/// assert_eq!(v.try_shrink::<2>(), None);
/// ```
pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
Bounded::<T, M>::try_new(self.get())
}
/// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
/// number of valid bits.
///
/// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
/// `N` bits, or a build error will occur.
///
/// # Examples
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 12>::new::<127>();
///
/// let u16_v: Bounded<u16, 12> = v.cast();
/// assert_eq!(u16_v.get(), 127);
///
/// // This won't build: a `u8` is smaller than the required 12 bits.
/// // let _: Bounded<u8, 12> = v.cast();
/// ```
pub fn cast<U>(self) -> Bounded<U, N>
where
U: TryFrom<T> + Integer,
T: Integer,
U: Integer<Signedness = T::Signedness>,
{
// SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
// `U` and `T` have the same sign, hence this conversion cannot fail.
let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };
// INVARIANT: Although the backing type has changed, the value is still represented within
// `N` bits, and with the same signedness.
Bounded::__new(value)
}
}
impl<T, const N: u32> Deref for Bounded<T, N>
where
T: Integer,
{
type Target = T;
fn deref(&self) -> &Self::Target {
// Enforce the invariant to inform the compiler of the bounds of the value.
if !fits_within(self.0, N) {
// SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
// value of a valid instance.
unsafe { core::hint::unreachable_unchecked() }
}
&self.0
}
}
/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
///
/// # Examples
///
/// ```
/// use kernel::num::{Bounded, TryIntoBounded};
///
/// // Succeeds because `128` fits into 8 bits.
/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
/// assert_eq!(v.as_deref().copied(), Some(128));
///
/// // Fails because `128` doesn't fits into 6 bits.
/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
/// assert_eq!(v, None);
/// ```
pub trait TryIntoBounded<T: Integer, const N: u32> {
/// Attempts to convert `self` into a [`Bounded`] using `N` bits.
///
/// Returns [`None`] if `self` does not fit into the target type.
fn try_into_bounded(self) -> Option<Bounded<T, N>>;
}
/// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
impl<T, U, const N: u32> TryIntoBounded<T, N> for U
where
T: Integer,
U: TryInto<T>,
{
fn try_into_bounded(self) -> Option<Bounded<T, N>> {
self.try_into().ok().and_then(Bounded::try_new)
}
}
// Comparisons between `Bounded`s.
impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
where
T: Integer,
U: Integer,
T: PartialEq<U>,
{
fn eq(&self, other: &Bounded<U, M>) -> bool {
self.get() == other.get()
}
}
impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}
impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
where
T: Integer,
U: Integer,
T: PartialOrd<U>,
{
fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
self.get().partial_cmp(&other.get())
}
}
impl<T, const N: u32> Ord for Bounded<T, N>
where
T: Integer,
T: Ord,
{
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.get().cmp(&other.get())
}
}
// Comparisons between a `Bounded` and its backing type.
impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
where
T: Integer,
T: PartialEq,
{
fn eq(&self, other: &T) -> bool {
self.get() == *other
}
}
impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
where
T: Integer,
T: PartialOrd,
{
fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
self.get().partial_cmp(other)
}
}
// Implementations of `core::ops` for two `Bounded` with the same backing type.
impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::Add<Output = T>,
{
type Output = T;
fn add(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() + rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::BitAnd<Output = T>,
{
type Output = T;
fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() & rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::BitOr<Output = T>,
{
type Output = T;
fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() | rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::BitXor<Output = T>,
{
type Output = T;
fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() ^ rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::Div<Output = T>,
{
type Output = T;
fn div(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() / rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::Mul<Output = T>,
{
type Output = T;
fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() * rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::Rem<Output = T>,
{
type Output = T;
fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() % rhs.get()
}
}
impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
where
T: Integer,
T: ops::Sub<Output = T>,
{
type Output = T;
fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
self.get() - rhs.get()
}
}
// Implementations of `core::ops` between a `Bounded` and its backing type.
impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
where
T: Integer,
T: ops::Add<Output = T>,
{
type Output = T;
fn add(self, rhs: T) -> Self::Output {
self.get() + rhs
}
}
impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
where
T: Integer,
T: ops::BitAnd<Output = T>,
{
type Output = T;
fn bitand(self, rhs: T) -> Self::Output {
self.get() & rhs
}
}
impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
where
T: Integer,
T: ops::BitOr<Output = T>,
{
type Output = T;
fn bitor(self, rhs: T) -> Self::Output {
self.get() | rhs
}
}
impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
where
T: Integer,
T: ops::BitXor<Output = T>,
{
type Output = T;
fn bitxor(self, rhs: T) -> Self::Output {
self.get() ^ rhs
}
}
impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
where
T: Integer,
T: ops::Div<Output = T>,
{
type Output = T;
fn div(self, rhs: T) -> Self::Output {
self.get() / rhs
}
}
impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
where
T: Integer,
T: ops::Mul<Output = T>,
{
type Output = T;
fn mul(self, rhs: T) -> Self::Output {
self.get() * rhs
}
}
impl<T, const N: u32> ops::Neg for Bounded<T, N>
where
T: Integer,
T: ops::Neg<Output = T>,
{
type Output = T;
fn neg(self) -> Self::Output {
-self.get()
}
}
impl<T, const N: u32> ops::Not for Bounded<T, N>
where
T: Integer,
T: ops::Not<Output = T>,
{
type Output = T;
fn not(self) -> Self::Output {
!self.get()
}
}
impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
where
T: Integer,
T: ops::Rem<Output = T>,
{
type Output = T;
fn rem(self, rhs: T) -> Self::Output {
self.get() % rhs
}
}
impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
where
T: Integer,
T: ops::Sub<Output = T>,
{
type Output = T;
fn sub(self, rhs: T) -> Self::Output {
self.get() - rhs
}
}
// Proxy implementations of `core::fmt`.
impl<T, const N: u32> fmt::Display for Bounded<T, N>
where
T: Integer,
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::Binary for Bounded<T, N>
where
T: Integer,
T: fmt::Binary,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
where
T: Integer,
T: fmt::LowerExp,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
where
T: Integer,
T: fmt::LowerHex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::Octal for Bounded<T, N>
where
T: Integer,
T: fmt::Octal,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
where
T: Integer,
T: fmt::UpperExp,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
where
T: Integer,
T: fmt::UpperHex,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
///
/// This is used to declare size properties as traits that we can constrain against in impl blocks.
macro_rules! impl_size_rule {
($trait:ty, $($num_bits:literal)*) => {
$(
impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
)*
};
}
/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
/// representation.
trait AtLeastXBits<const N: usize> {}
/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
/// it.
///
/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
/// module.
mod atleast_impls {
use super::*;
// Number of bits at least as large as 64.
impl_size_rule!(AtLeastXBits<64>, 64);
// Anything 64 bits or more is also larger than 32.
impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
// Other numbers of bits at least as large as 32.
impl_size_rule!(AtLeastXBits<32>,
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63
);
// Anything 32 bits or more is also larger than 16.
impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
// Other numbers of bits at least as large as 16.
impl_size_rule!(AtLeastXBits<16>,
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
);
// Anything 16 bits or more is also larger than 8.
impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
// Other numbers of bits at least as large as 8.
impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
}
/// Generates `From` implementations from a primitive type into a [`Bounded`] with
/// enough bits to store any value of that type.
///
/// Note: The only reason for having this macro is that if we pass `$type` as a generic
/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
/// regular `impl` block.
macro_rules! impl_from_primitive {
($($type:ty)*) => {
$(
#[doc = ::core::concat!(
"Conversion from a [`",
::core::stringify!($type),
"`] into a [`Bounded`] of same signedness with enough bits to store it.")]
impl<T, const N: u32> From<$type> for Bounded<T, N>
where
$type: Integer,
T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
{
fn from(value: $type) -> Self {
// INVARIANT: The trait bound on `Self` guarantees that `N` bits is
// enough to hold any value of the source type.
Self::__new(T::from(value))
}
}
)*
}
}
impl_from_primitive!(
u8 u16 u32 u64 usize
i8 i16 i32 i64 isize
);
/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
/// provided they have the same signedness.
trait FitsInXBits<const N: usize> {}
/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
/// it.
///
/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
/// module.
mod fits_impls {
use super::*;
// Number of bits that fit into a 8-bits primitive.
impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);
// Anything that fits into 8 bits also fits into 16.
impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
// Other number of bits that fit into a 16-bits primitive.
impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);
// Anything that fits into 16 bits also fits into 32.
impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
// Other number of bits that fit into a 32-bits primitive.
impl_size_rule!(FitsInXBits<32>,
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
);
// Anything that fits into 32 bits also fits into 64.
impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
// Other number of bits that fit into a 64-bits primitive.
impl_size_rule!(FitsInXBits<64>,
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
);
}
/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
/// guaranteed to contain it.
///
/// Note: The only reason for having this macro is that if we pass `$type` as a generic
/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
/// regular `impl` block.
macro_rules! impl_into_primitive {
($($type:ty)*) => {
$(
#[doc = ::core::concat!(
"Conversion from a [`Bounded`] with no more bits than a [`",
::core::stringify!($type),
"`] and of same signedness into [`",
::core::stringify!($type),
"`]")]
impl<T, const N: u32> From<Bounded<T, N>> for $type
where
$type: Integer + TryFrom<T>,
T: Integer<Signedness = <$type as Integer>::Signedness>,
Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
{
fn from(value: Bounded<T, N>) -> $type {
// SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
// is constrained to `N` bits) can fit into the destination type, so this
// conversion cannot fail.
unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
}
}
)*
}
}
impl_into_primitive!(
u8 u16 u32 u64 usize
i8 i16 i32 i64 isize
);
// Single-bit `Bounded`s can be converted from/to a boolean.
impl<T> From<Bounded<T, 1>> for bool
where
T: Integer + Zeroable,
{
fn from(value: Bounded<T, 1>) -> Self {
value.get() != Zeroable::zeroed()
}
}
impl<T, const N: u32> From<bool> for Bounded<T, N>
where
T: Integer + From<bool>,
{
fn from(value: bool) -> Self {
// INVARIANT: A boolean can be represented using a single bit, and thus fits within any
// integer type for any `N` > 0.
Self::__new(T::from(value))
}
}
|