1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
// SPDX-License-Identifier: GPL-2.0
use core::ops::Range;
use kernel::{
device,
prelude::*,
ptr::{
Alignable,
Alignment, //
},
sizes::*,
sync::aref::ARef, //
};
use crate::{
dma::DmaObject,
driver::Bar0,
firmware::gsp::GspFirmware,
gpu::Chipset,
gsp,
num::{
usize_as_u64,
FromSafeCast, //
},
regs,
};
mod hal;
/// Type holding the sysmem flush memory page, a page of memory to be written into the
/// `NV_PFB_NISO_FLUSH_SYSMEM_ADDR*` registers and used to maintain memory coherency.
///
/// A system memory page is required for `sysmembar`, which is a GPU-initiated hardware
/// memory-barrier operation that flushes all pending GPU-side memory writes that were done through
/// PCIE to system memory. It is required for falcons to be reset as the reset operation involves a
/// reset handshake. When the falcon acknowledges a reset, it writes into system memory. To ensure
/// this write is visible to the host and prevent driver timeouts, the falcon must perform a
/// sysmembar operation to flush its writes.
///
/// Because of this, the sysmem flush memory page must be registered as early as possible during
/// driver initialization, and before any falcon is reset.
///
/// Users are responsible for manually calling [`Self::unregister`] before dropping this object,
/// otherwise the GPU might still use it even after it has been freed.
pub(crate) struct SysmemFlush {
/// Chipset we are operating on.
chipset: Chipset,
device: ARef<device::Device>,
/// Keep the page alive as long as we need it.
page: DmaObject,
}
impl SysmemFlush {
/// Allocate a memory page and register it as the sysmem flush page.
pub(crate) fn register(
dev: &device::Device<device::Bound>,
bar: &Bar0,
chipset: Chipset,
) -> Result<Self> {
let page = DmaObject::new(dev, kernel::page::PAGE_SIZE)?;
hal::fb_hal(chipset).write_sysmem_flush_page(bar, page.dma_handle())?;
Ok(Self {
chipset,
device: dev.into(),
page,
})
}
/// Unregister the managed sysmem flush page.
///
/// In order to gracefully tear down the GPU, users must make sure to call this method before
/// dropping the object.
pub(crate) fn unregister(&self, bar: &Bar0) {
let hal = hal::fb_hal(self.chipset);
if hal.read_sysmem_flush_page(bar) == self.page.dma_handle() {
let _ = hal.write_sysmem_flush_page(bar, 0).inspect_err(|e| {
dev_warn!(
&self.device,
"failed to unregister sysmem flush page: {:?}",
e
)
});
} else {
// Another page has been registered after us for some reason - warn as this is a bug.
dev_warn!(
&self.device,
"attempt to unregister a sysmem flush page that is not active\n"
);
}
}
}
/// Layout of the GPU framebuffer memory.
///
/// Contains ranges of GPU memory reserved for a given purpose during the GSP boot process.
#[derive(Debug)]
pub(crate) struct FbLayout {
/// Range of the framebuffer. Starts at `0`.
pub(crate) fb: Range<u64>,
/// VGA workspace, small area of reserved memory at the end of the framebuffer.
pub(crate) vga_workspace: Range<u64>,
/// FRTS range.
pub(crate) frts: Range<u64>,
/// Memory area containing the GSP bootloader image.
pub(crate) boot: Range<u64>,
/// Memory area containing the GSP firmware image.
pub(crate) elf: Range<u64>,
/// WPR2 heap.
pub(crate) wpr2_heap: Range<u64>,
/// WPR2 region range, starting with an instance of `GspFwWprMeta`.
pub(crate) wpr2: Range<u64>,
pub(crate) heap: Range<u64>,
pub(crate) vf_partition_count: u8,
}
impl FbLayout {
/// Computes the FB layout for `chipset` required to run the `gsp_fw` GSP firmware.
pub(crate) fn new(chipset: Chipset, bar: &Bar0, gsp_fw: &GspFirmware) -> Result<Self> {
let hal = hal::fb_hal(chipset);
let fb = {
let fb_size = hal.vidmem_size(bar);
0..fb_size
};
let vga_workspace = {
let vga_base = {
const NV_PRAMIN_SIZE: u64 = usize_as_u64(SZ_1M);
let base = fb.end - NV_PRAMIN_SIZE;
if hal.supports_display(bar) {
match regs::NV_PDISP_VGA_WORKSPACE_BASE::read(bar).vga_workspace_addr() {
Some(addr) => {
if addr < base {
const VBIOS_WORKSPACE_SIZE: u64 = usize_as_u64(SZ_128K);
// Point workspace address to end of framebuffer.
fb.end - VBIOS_WORKSPACE_SIZE
} else {
addr
}
}
None => base,
}
} else {
base
}
};
vga_base..fb.end
};
let frts = {
const FRTS_DOWN_ALIGN: Alignment = Alignment::new::<SZ_128K>();
const FRTS_SIZE: u64 = usize_as_u64(SZ_1M);
let frts_base = vga_workspace.start.align_down(FRTS_DOWN_ALIGN) - FRTS_SIZE;
frts_base..frts_base + FRTS_SIZE
};
let boot = {
const BOOTLOADER_DOWN_ALIGN: Alignment = Alignment::new::<SZ_4K>();
let bootloader_size = u64::from_safe_cast(gsp_fw.bootloader.ucode.size());
let bootloader_base = (frts.start - bootloader_size).align_down(BOOTLOADER_DOWN_ALIGN);
bootloader_base..bootloader_base + bootloader_size
};
let elf = {
const ELF_DOWN_ALIGN: Alignment = Alignment::new::<SZ_64K>();
let elf_size = u64::from_safe_cast(gsp_fw.size);
let elf_addr = (boot.start - elf_size).align_down(ELF_DOWN_ALIGN);
elf_addr..elf_addr + elf_size
};
let wpr2_heap = {
const WPR2_HEAP_DOWN_ALIGN: Alignment = Alignment::new::<SZ_1M>();
let wpr2_heap_size =
gsp::LibosParams::from_chipset(chipset).wpr_heap_size(chipset, fb.end);
let wpr2_heap_addr = (elf.start - wpr2_heap_size).align_down(WPR2_HEAP_DOWN_ALIGN);
wpr2_heap_addr..(elf.start).align_down(WPR2_HEAP_DOWN_ALIGN)
};
let wpr2 = {
const WPR2_DOWN_ALIGN: Alignment = Alignment::new::<SZ_1M>();
let wpr2_addr = (wpr2_heap.start - u64::from_safe_cast(size_of::<gsp::GspFwWprMeta>()))
.align_down(WPR2_DOWN_ALIGN);
wpr2_addr..frts.end
};
let heap = {
const HEAP_SIZE: u64 = usize_as_u64(SZ_1M);
wpr2.start - HEAP_SIZE..wpr2.start
};
Ok(Self {
fb,
vga_workspace,
frts,
boot,
elf,
wpr2_heap,
wpr2,
heap,
vf_partition_count: 0,
})
}
}
|