1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2025 Samsung Electronics Co., Ltd.
// Author: Michal Wilczynski <m.wilczynski@samsung.com>
//! PWM subsystem abstractions.
//!
//! C header: [`include/linux/pwm.h`](srctree/include/linux/pwm.h).
use crate::{
bindings,
container_of,
device::{self, Bound},
devres,
error::{self, to_result},
prelude::*,
types::{ARef, AlwaysRefCounted, Opaque}, //
};
use core::{marker::PhantomData, ptr::NonNull};
/// Represents a PWM waveform configuration.
/// Mirrors struct [`struct pwm_waveform`](srctree/include/linux/pwm.h).
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct Waveform {
/// Total duration of one complete PWM cycle, in nanoseconds.
pub period_length_ns: u64,
/// Duty-cycle active time, in nanoseconds.
///
/// For a typical normal polarity configuration (active-high) this is the
/// high time of the signal.
pub duty_length_ns: u64,
/// Duty-cycle start offset, in nanoseconds.
///
/// Delay from the beginning of the period to the first active edge.
/// In most simple PWM setups this is `0`, so the duty cycle starts
/// immediately at each period’s start.
pub duty_offset_ns: u64,
}
impl From<bindings::pwm_waveform> for Waveform {
fn from(wf: bindings::pwm_waveform) -> Self {
Waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
impl From<Waveform> for bindings::pwm_waveform {
fn from(wf: Waveform) -> Self {
bindings::pwm_waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
/// Describes the outcome of a `round_waveform` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RoundingOutcome {
/// The requested waveform was achievable exactly or by rounding values down.
ExactOrRoundedDown,
/// The requested waveform could only be achieved by rounding up.
RoundedUp,
}
/// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct Device(Opaque<bindings::pwm_device>);
impl Device {
/// Creates a reference to a [`Device`] from a valid C pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Device`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Device` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_device`.
fn as_raw(&self) -> *mut bindings::pwm_device {
self.0.get()
}
/// Gets the hardware PWM index for this device within its chip.
pub fn hwpwm(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).hwpwm }
}
/// Gets a reference to the parent `Chip` that this device belongs to.
pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
// SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
// is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
// Chip::from_raw's safety conditions must be met.
unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
}
/// Gets the label for this PWM device, if any.
pub fn label(&self) -> Option<&CStr> {
// SAFETY: self.as_raw() provides a valid pointer.
let label_ptr = unsafe { (*self.as_raw()).label };
if label_ptr.is_null() {
return None;
}
// SAFETY: label_ptr is non-null and points to a C string
// managed by the kernel, valid for the lifetime of the PWM device.
Some(unsafe { CStr::from_char_ptr(label_ptr) })
}
/// Sets the PWM waveform configuration and enables the PWM signal.
pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
let c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
// handles all necessary internal locking.
let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
to_result(ret)
}
/// Queries the hardware for the configuration it would apply for a given
/// request.
pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
let mut c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
// the C function will update.
let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
*wf = Waveform::from(c_wf);
if ret == 1 {
Ok(RoundingOutcome::RoundedUp)
} else {
Ok(RoundingOutcome::ExactOrRoundedDown)
}
}
/// Reads the current waveform configuration directly from the hardware.
pub fn get_waveform(&self) -> Result<Waveform> {
let mut c_wf = bindings::pwm_waveform::default();
// SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
// to a stack-allocated `pwm_waveform` struct for the kernel to fill.
let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
Ok(Waveform::from(c_wf))
}
}
/// The result of a `round_waveform_tohw` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct RoundedWaveform<WfHw> {
/// A status code, 0 for success or 1 if values were rounded up.
pub status: c_int,
/// The driver-specific hardware representation of the waveform.
pub hardware_waveform: WfHw,
}
/// Trait defining the operations for a PWM driver.
pub trait PwmOps: 'static + Sized {
/// The driver-specific hardware representation of a waveform.
///
/// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
type WfHw: Copy + Default;
/// Optional hook for when a PWM device is requested.
fn request(_chip: &Chip<Self>, _pwm: &Device, _parent_dev: &device::Device<Bound>) -> Result {
Ok(())
}
/// Optional hook for capturing a PWM signal.
fn capture(
_chip: &Chip<Self>,
_pwm: &Device,
_result: &mut bindings::pwm_capture,
_timeout: usize,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
/// Convert a generic waveform to the hardware-specific representation.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_tohw(
_chip: &Chip<Self>,
_pwm: &Device,
_wf: &Waveform,
) -> Result<RoundedWaveform<Self::WfHw>> {
Err(ENOTSUPP)
}
/// Convert a hardware-specific representation back to a generic waveform.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_fromhw(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_wf: &mut Waveform,
) -> Result {
Err(ENOTSUPP)
}
/// Read the current hardware configuration into the hardware-specific representation.
fn read_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_parent_dev: &device::Device<Bound>,
) -> Result<Self::WfHw> {
Err(ENOTSUPP)
}
/// Write a hardware-specific waveform configuration to the hardware.
fn write_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
}
/// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
struct Adapter<T: PwmOps> {
_p: PhantomData<T>,
}
impl<T: PwmOps> Adapter<T> {
const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
/// # Safety
///
/// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
wfhw_ptr.cast::<u8>(),
size,
);
}
Ok(())
}
/// # Safety
///
/// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
let mut wfhw = T::WfHw::default();
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
wfhw_ptr.cast::<u8>(),
core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
size,
);
}
Ok(wfhw)
}
/// # Safety
///
/// `dev` must be a valid pointer to a `bindings::device` embedded within a
/// `bindings::pwm_chip`. This function is called by the device core when the
/// last reference to the device is dropped.
unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
// SAFETY: The function's contract guarantees that `dev` points to a `device`
// field embedded within a valid `pwm_chip`. `container_of!` can therefore
// safely calculate the address of the containing struct.
let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
// SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
// above. Calling this FFI function is safe.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: The driver data was initialized in `new`. We run its destructor here.
unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
// Now, call the original release function to free the `pwm_chip` itself.
// SAFETY: `dev` is the valid pointer passed into this callback, which is
// the expected argument for `pwmchip_release`.
unsafe {
bindings::pwmchip_release(dev);
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn request_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
) -> c_int {
// SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::request(chip, pwm, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn capture_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
res: *mut bindings::pwm_capture,
timeout: usize,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, result) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
&mut *res,
)
};
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::capture(chip, pwm, result, timeout, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_tohw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wf_ptr: *const bindings::pwm_waveform,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, wf) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
Waveform::from(*wf_ptr),
)
};
match T::round_waveform_tohw(chip, pwm, &wf) {
Ok(rounded) => {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
return EINVAL.to_errno();
}
rounded.status
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_fromhw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
wf_ptr: *mut bindings::pwm_waveform,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
let mut rust_wf = Waveform::default();
match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
Ok(()) => {
// SAFETY: `wf_ptr` is guaranteed valid by the C caller.
unsafe {
*wf_ptr = rust_wf.into();
};
0
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn read_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::read_waveform(chip, pwm, bound_parent) {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
Ok(()) => 0,
Err(e) => e.to_errno(),
},
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn write_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
}
/// VTable structure wrapper for PWM operations.
/// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct PwmOpsVTable(bindings::pwm_ops);
// SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
// and a size, which are simple data types that can be safely moved across
// threads. The thread-safety of calling these functions is handled by the
// kernel's locking mechanisms.
unsafe impl Send for PwmOpsVTable {}
// SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
// so it can be safely referenced and accessed concurrently by multiple threads
// e.g. to read the function pointers.
unsafe impl Sync for PwmOpsVTable {}
impl PwmOpsVTable {
/// Returns a raw pointer to the underlying `pwm_ops` struct.
pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
&self.0
}
}
/// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
///
/// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
/// expected by the kernel.
pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
// SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
// `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
ops.request = Some(Adapter::<T>::request_callback);
ops.capture = Some(Adapter::<T>::capture_callback);
ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
PwmOpsVTable(ops)
}
/// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
#[repr(transparent)]
pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
impl<T: PwmOps> Chip<T> {
/// Creates a reference to a [`Chip`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Chip`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Chip` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_chip`.
pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
self.0.get()
}
/// Gets the number of PWM channels (hardware PWMs) on this chip.
pub fn num_channels(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).npwm }
}
/// Returns `true` if the chip supports atomic operations for configuration.
pub fn is_atomic(&self) -> bool {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).atomic }
}
/// Returns a reference to the embedded `struct device` abstraction.
pub fn device(&self) -> &device::Device {
// SAFETY:
// - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
// - The `dev` field is an instance of `bindings::device` embedded
// within `pwm_chip`.
// - Taking a pointer to this embedded field is valid.
// - `device::Device` is `#[repr(transparent)]`.
// - The lifetime of the returned reference is tied to `self`.
unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
}
/// Gets the typed driver specific data associated with this chip's embedded device.
pub fn drvdata(&self) -> &T {
// SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
// which we know holds our `T`. The pointer is valid for the lifetime of `self`.
unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
}
/// Returns a reference to the parent device of this PWM chip's device.
///
/// # Safety
///
/// The caller must guarantee that the parent device exists and is bound.
/// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
// SAFETY: Per the function's safety contract, the parent device exists.
let parent = unsafe { self.device().parent().unwrap_unchecked() };
// SAFETY: Per the function's safety contract, the parent device is bound.
// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe { parent.as_bound() }
}
/// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
///
/// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
/// on its embedded `struct device`.
pub fn new(
parent_dev: &device::Device,
num_channels: u32,
data: impl pin_init::PinInit<T, Error>,
) -> Result<ARef<Self>> {
let sizeof_priv = core::mem::size_of::<T>();
// SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
let c_chip_ptr_raw =
unsafe { bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv) };
let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
// SAFETY: The `drvdata` pointer is the start of the private area, which is where
// we will construct our `T` object.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: We construct the `T` object in-place in the allocated private memory.
unsafe { data.__pinned_init(drvdata_ptr.cast())? };
// SAFETY: `c_chip_ptr` points to a valid chip.
unsafe {
(*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback);
}
// SAFETY: `c_chip_ptr` points to a valid chip.
// The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
// returned by `as_raw()` is always valid.
unsafe {
(*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw();
}
// Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
// `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
// `Opaque<T>` is `repr(transparent)` over `T`.
let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
// SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
// `bindings::pwm_chip`) whose embedded device has refcount 1.
// `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
}
}
// SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
#[inline]
fn inc_ref(&self) {
// SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
// The embedded `dev` is valid. `get_device` increments its refcount.
unsafe {
bindings::get_device(&raw mut (*self.0.get()).dev);
}
}
#[inline]
unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
// SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
// with a non-zero refcount. `put_device` handles decrement and final release.
unsafe {
bindings::put_device(&raw mut (*c_chip_ptr).dev);
}
}
}
// SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
// structure's state is managed and synchronized by the kernel's device model
// and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
// wrapper (and the pointer it contains) across threads.
unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
// SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
// the `Chip` data is immutable from the Rust side without holding the appropriate
// kernel locks, which the C core is responsible for. Any interior mutability is
// handled and synchronized by the C kernel code.
unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
/// A resource guard that ensures `pwmchip_remove` is called on drop.
///
/// This struct is intended to be managed by the `devres` framework by transferring its ownership
/// via [`devres::register`]. This ties the lifetime of the PWM chip registration
/// to the lifetime of the underlying device.
pub struct Registration<T: PwmOps> {
chip: ARef<Chip<T>>,
}
impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
/// Registers a PWM chip with the PWM subsystem.
///
/// Transfers its ownership to the `devres` framework, which ties its lifetime
/// to the parent device.
/// On unbind of the parent device, the `devres` entry will be dropped, automatically
/// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
pub fn register(dev: &device::Device<Bound>, chip: ARef<Chip<T>>) -> Result {
let chip_parent = chip.device().parent().ok_or(EINVAL)?;
if dev.as_raw() != chip_parent.as_raw() {
return Err(EINVAL);
}
let c_chip_ptr = chip.as_raw();
// SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
// `__pwmchip_add` is the C function to register the chip with the PWM core.
unsafe {
to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
}
let registration = Registration { chip };
devres::register(dev, registration, GFP_KERNEL)
}
}
impl<T: PwmOps> Drop for Registration<T> {
fn drop(&mut self) {
let chip_raw = self.chip.as_raw();
// SAFETY: `chip_raw` points to a chip that was successfully registered.
// `bindings::pwmchip_remove` is the correct C function to unregister it.
// This `drop` implementation is called automatically by `devres` on driver unbind.
unsafe {
bindings::pwmchip_remove(chip_raw);
}
}
}
/// Declares a kernel module that exposes a single PWM driver.
///
/// # Examples
///
///```ignore
/// kernel::module_pwm_platform_driver! {
/// type: MyDriver,
/// name: "Module name",
/// authors: ["Author name"],
/// description: "Description",
/// license: "GPL v2",
/// }
///```
#[macro_export]
macro_rules! module_pwm_platform_driver {
($($user_args:tt)*) => {
$crate::module_platform_driver! {
$($user_args)*
imports_ns: ["PWM"],
}
};
}
|