File: star.py

package info (click to toggle)
linuxcnc 1%3A2.9.4-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 282,780 kB
  • sloc: python: 201,110; ansic: 106,370; cpp: 99,219; tcl: 16,054; xml: 10,617; sh: 10,258; makefile: 1,251; javascript: 138; sql: 72; asm: 15
file content (226 lines) | stat: -rw-r--r-- 9,099 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
'''
star.py

Copyright (C) 2020, 2021, 2022  Phillip A Carter
Copyright (C) 2020, 2021, 2022  Gregory D Carl

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
'''

import os
import sys
import math
import gettext

for f in sys.path:
    if '/lib/python' in f:
        if '/usr' in f:
            localeDir = 'usr/share/locale'
        else:
            localeDir = os.path.join('{}'.format(f.split('/lib')[0]),'share','locale')
        break
gettext.install("linuxcnc", localedir=localeDir)

# Conv is the upstream calling module
def preview(Conv, fTmp, fNgc, fNgcBkp, \
            matNumber, matName, \
            preAmble, postAmble, \
            leadinLength, leadoutLength, \
            isCenter, xOffset, yOffset, \
            kerfWidth, isExternal, \
            points, extDia, intDia, angle):
    error = ''
    msg1 = _('entry is invalid')
    valid, xOffset = Conv.conv_is_float(xOffset)
    if not valid and xOffset:
        msg0 = _('X ORIGIN')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, yOffset = Conv.conv_is_float(yOffset)
    if not valid and yOffset:
        msg0 = _('Y ORIGIN')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, leadinLength = Conv.conv_is_float(leadinLength)
    if not valid and leadinLength:
        msg0 = _('LEAD IN')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, leadoutLength = Conv.conv_is_float(leadoutLength)
    if not valid and leadoutLength:
        msg0 = _('LEAD OUT')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, points = Conv.conv_is_int(points)
    if not valid and points:
        msg0 = _('POINTS')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, extDia = Conv.conv_is_float(extDia)
    if not valid and extDia:
        msg0 = _('OUTER DIA')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, intDia = Conv.conv_is_float(intDia)
    if not valid and intDia:
        msg0 = _('INNER DIA')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, angle = Conv.conv_is_float(angle)
    if not valid and angle:
        msg0 = _('ANGLE')
        error += '{} {}\n\n'.format(msg0, msg1)
    valid, kerfWidth = Conv.conv_is_float(kerfWidth)
    if not valid:
        msg = _('Invalid Kerf Width entry in material')
        error += '{}\n\n'.format(msg)
    if error:
        return error
    if points < 2:
        msg = _('More than two POINTS required')
        error += '{}\n\n'.format(msg)
    if extDia == 0:
        msg = _('OUTER DIA cannot be zero')
        error += '{}\n\n'.format(msg)
    if intDia == 0:
        msg = _('INNER DIA cannot be zero')
        error += '{}\n\n'.format(msg)
    if intDia >= extDia:
        msg = _('INNER DIA must be less than OUTER DIA')
        error += '{}\n\n'.format(msg)
    if error:
        return error
    extRadius = extDia / 2
    intRadius = intDia / 2
    angle = math.radians(angle)
    # get start pop
    if isCenter:
        xC = xOffset
        yC = yOffset
    else:
        xC = xOffset + extRadius * math.cos(math.radians(0))
        yC = yOffset + extRadius * math.sin(math.radians(90))
    # get all points
    pList = get_points(points, angle, xC, yC, extRadius, intRadius)
    # get external offset required
    extOffset = get_offset([pList[3][0],pList[3][1]], [pList[2][0],pList[2][1]], [pList[1][0],pList[1][1]], kerfWidth)
    # get internal offset required
    intOffset = get_offset([pList[0][0],pList[0][1]], [pList[1][0],pList[1][1]], [pList[2][0],pList[2][1]], kerfWidth)
    # get new points
    move = 0 if isCenter else extOffset
    if isExternal:
        pList = get_points(points, angle, xC + move, yC + move, extRadius + extOffset, intRadius + intOffset)
    else:
        pList = get_points(points, angle, xC - move, yC - move, extRadius - extOffset, intRadius - intOffset)
    outTmp = open(fTmp, 'w')
    outNgc = open(fNgc, 'w')
    inWiz = open(fNgcBkp, 'r')
    for line in inWiz:
        if '(new conversational file)' in line:
            if('\\n') in preAmble:
                outNgc.write('(preamble)\n')
                for l in preAmble.split('\\n'):
                    outNgc.write('{}\n'.format(l))
            else:
                outNgc.write('\n{} (preamble)\n'.format(preAmble))
            break
        elif '(postamble)' in line:
            break
        elif 'm2' in line.lower() or 'm30' in line.lower():
            continue
        outNgc.write(line)
    outTmp.write('\n(conversational star {})\n'.format(points))
    outTmp.write(';using material #{}: {}\n'.format(matNumber, matName))
    outTmp.write('M190 P{}\n'.format(matNumber))
    outTmp.write('M66 P3 L3 Q1\n')
    outTmp.write('f#<_hal[plasmac.cut-feed-rate]>\n')
    if isExternal:
        if leadinLength > 0:
            lAngle = math.atan2(pList[0][1] - pList[-1][1],
                                pList[0][0] - pList[-1][0])
            xlStart = pList[0][0] + leadinLength * math.cos(lAngle)
            ylStart = pList[0][1] + leadinLength * math.sin(lAngle)
            outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
            outTmp.write('m3 $0 s1\n')
            outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
        else:
            outTmp.write('g0 x{} y{}\n'.format(pList[0][0], pList[0][1]))
            outTmp.write('m3 $0 s1\n')
        for i in range(points * 2, 0, -1):
            outTmp.write('g1 x{} y{}\n'.format(pList[i - 1][0], pList[i - 1][1]))
        if leadoutLength > 0:
            lAngle = math.atan2(pList[0][1] - pList[1][1],
                                pList[0][0] - pList[1][0])
            xlEnd = pList[0][0] + leadoutLength * math.cos(lAngle)
            ylEnd = pList[0][1] + leadoutLength * math.sin(lAngle)
            outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
    else:
        if leadinLength > 0:
            lAngle = math.atan2(pList[-1][1] - pList[0][1],
                                pList[-1][0] - pList[0][0])
            xlStart = pList[points * 2 - 1][0] + leadinLength * math.cos(lAngle)
            ylStart = pList[points * 2 - 1][1] + leadinLength * math.sin(lAngle)
            outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
            outTmp.write('m3 $0 s1\n')
            outTmp.write('g1 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
            outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
        else:
            outTmp.write('g0 x{} y{}\n'.format(pList[points * 2 - 1][0], pList[points * 2 - 1][1]))
            outTmp.write('m3 $0 s1\n')
            outTmp.write('g1 x{} y{}\n'.format(pList[0][0], pList[0][1]))
        for i in range(1, points * 2):
            outTmp.write('g1 x{} y{}\n'.format(pList[i][0], pList[i][1]))
        if leadoutLength > 0:
            lAngle = math.atan2(pList[-1][1] - pList[-2][1],
                                pList[-1][0] - pList[-2][0])
            xlEnd = pList[-1][0] + leadoutLength * math.cos(lAngle)
            ylEnd = pList[-1][1] + leadoutLength * math.sin(lAngle)
            outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xlEnd, ylEnd))
    outTmp.write('m5 $0\n')
    outTmp.close()
    outTmp = open(fTmp, 'r')
    for line in outTmp:
        outNgc.write(line)
    outTmp.close()
    if('\\n') in postAmble:
        outNgc.write('(postamble)\n')
        for l in postAmble.split('\\n'):
            outNgc.write('{}\n'.format(l))
    else:
        outNgc.write('\n{} (postamble)\n'.format(postAmble))
    outNgc.write('m2\n')
    outNgc.close()
    return False

def get_points(points, angle, xC, yC, extRadius, intRadius):
    pList = []
    for i in range(points * 2):
        pAngle = angle + 2 * math.pi * i / (points * 2)
        if i % 2 == 0:
            x = xC + extRadius * math.cos(pAngle)
            y = yC + extRadius * math.sin(pAngle)
        else:
            x = xC + intRadius * math.cos(pAngle)
            y = yC + intRadius * math.sin(pAngle)
        pList.append([round(x, 3), round(y, 3)])
    return pList

def get_offset(A, B, C, kerfWidth):
    # Ax, Ay = A[0] - B[0], A[1] - B[1]
    # Cx, Cy = C[0] - B[0], C[1] - B[1]
    # a = math.atan2(Ay, Ax)
    # c = math.atan2(Cy, Cx)
    a = math.atan2(A[1] - B[1], A[0] - B[0])
    c = math.atan2(C[1] - B[1], C[0] - B[0])
    if a < 0: a += math.pi * 2
    if c < 0: c += math.pi * 2
    ang = (math.pi * 2 + c - a) if a > c else (c - a)
    ang = math.radians(90) - (ang / 2)
    adj = (kerfWidth / 2) / math.sin(ang)
    ofs = math.tan(ang) * adj
    return ofs