1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
'''
ellipse.py
Copyright (C) 2021, 2022 Phillip A Carter
Copyright (C) 2021, 2022 Gregory D Carl
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
'''
import os
import sys
import numpy
import gettext
for f in sys.path:
if '/lib/python' in f:
if '/usr' in f:
localeDir = 'usr/share/locale'
else:
localeDir = os.path.join('{}'.format(f.split('/lib')[0]),'share','locale')
break
gettext.install("linuxcnc", localedir=localeDir)
# Conv is the upstream calling module
def preview(Conv, fTmp, fNgc, fNgcBkp, \
matNumber, matName, \
preAmble, postAmble, \
leadinLength, leadoutLength, \
isCenter, xOffset, yOffset, \
kerfWidth, isExternal, \
width, height, angle, unitsPerMm):
error = ''
msg1 = _('entry is invalid')
valid, xOffset = Conv.conv_is_float(xOffset)
if not valid and xOffset:
msg0 = _('X ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, yOffset = Conv.conv_is_float(yOffset)
if not valid and yOffset:
msg0 = _('Y ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadinLength = Conv.conv_is_float(leadinLength)
if not valid and leadinLength :
msg0 = _('LEAD IN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadoutLength = Conv.conv_is_float(leadoutLength)
if not valid and leadoutLength:
msg0 = _('LEAD OUT')
error += '{} {}\n\n'.format(msg0, msg1)
valid, width = Conv.conv_is_float(width)
if not valid and width:
msg0 = _('WIDTH')
error += '{} {}\n\n'.format(msg0, msg1)
valid, height = Conv.conv_is_float(height)
if not valid and height:
msg0 = _('HEIGHT')
error += '{} {}\n\n'.format(msg0, msg1)
valid, angle = Conv.conv_is_float(angle)
if not valid and angle:
msg0 = _('ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, kerfWidth = Conv.conv_is_float(kerfWidth)
if not valid:
msg = _('Invalid Kerf Width entry in material')
error += '{}\n\n'.format(msg)
if error:
return error
if width == 0:
msg = _('WIDTH cannot be zero')
error += '{}\n\n'.format(msg)
if height == 0:
msg = _('HEIGHT cannot be zero')
error += '{}\n\n'.format(msg)
if error:
return error
angle = numpy.radians(angle)
if isExternal:
width += kerfWidth
height += kerfWidth
else:
width -= kerfWidth
height -= kerfWidth
if isCenter:
centerX = xOffset
centerY = yOffset
else:
centerX = xOffset + width / 2
centerY = yOffset + height / 2
leadInOffset = numpy.sin(45) * leadinLength
leadOutOffset = numpy.sin(45) * leadoutLength
# approx perimeter in mm
perim = (numpy.pi * (3 * (width + height) - numpy.sqrt((3 * width + height) * (width + 3 * height)))) * unitsPerMm
# number of points is 360 unless perimeter is > 360mm then have a segment length of 1mm
points = 360 if perim <= 360 else int(perim)
mult = float(360) / points
# start/end point of cut
start = int(points * 0.625)
# create the ellipse points in an array
array = numpy.linspace(0, points, points)
X = centerX + width / 2 * numpy.cos(numpy.radians(array * mult))
Y = centerY + height / 2 * numpy.sin(numpy.radians(array * mult))
# rotate the ellipse if required
for point in range(points):
x = X[point]
y = Y[point]
X[point] = x * numpy.cos(angle) - y * numpy.sin(angle)
Y[point] = x * numpy.sin(angle) + y * numpy.cos(angle)
# initialize files
outTmp = open(fTmp, 'w')
outNgc = open(fNgc, 'w')
inWiz = open(fNgcBkp, 'r')
# begin writing the gcode
for line in inWiz:
if '(new conversational file)' in line:
if('\\n') in preAmble:
outNgc.write('(preamble)\n')
for l in preAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (preamble)\n'.format(preAmble))
break
elif '(postamble)' in line:
break
elif 'm2' in line.lower() or 'm30' in line.lower():
continue
outNgc.write(line)
outTmp.write('\n(conversational ellipse)\n')
outTmp.write(';using material #{}: {}\n'.format(matNumber, matName))
outTmp.write('M190 P{}\n'.format(matNumber))
outTmp.write('M66 P3 L3 Q1\n')
outTmp.write('f#<_hal[plasmac.cut-feed-rate]>\n')
# get the angle of the first segment
delta_x = -1 - 0
delta_y = 1 - 0
theta_radians = numpy.arctan2(delta_y, delta_x)
if isExternal:
dX = X[start - 1] - X[start]
dY = Y[start - 1] - Y[start]
else:
dX = X[start] - X[start + 1]
dY = Y[start] - Y[start + 1]
segAngle = numpy.arctan2(dY, dX)
# set direction constants
right = numpy.radians(0)
up = numpy.radians(90)
left = numpy.radians(180)
down = numpy.radians(270)
# leadin points if required
if leadInOffset > 0:
if isExternal:
dir = [up, left]
else:
dir = [down, right]
xlcenter = X[start] + (leadInOffset * numpy.cos(segAngle + dir[0]))
ylcenter = Y[start] + (leadInOffset * numpy.sin(segAngle + dir[0]))
xlStart = xlcenter + (leadInOffset * numpy.cos(segAngle + dir[1]))
ylStart = ylcenter + (leadInOffset * numpy.sin(segAngle + dir[1]))
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
outTmp.write('m3 $0 s1\n')
outTmp.write('g3 x{:.6f} y{:.6f} i{:.6f} j{:.6f}\n'.format(X[start], Y[start], xlcenter - xlStart, ylcenter - ylStart))
else:
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(X[start], Y[start]))
outTmp.write('m3 $0 s1\n')
# write the ellipse points
if isExternal:
for point in range(start, -1, -1):
outTmp.write('g1 x{0:.6f} y{1:.6f}\n'.format(X[point], Y[point]))
for point in range(points - 1, start - 1, -1):
outTmp.write('g1 x{0:.6f} y{1:.6f}\n'.format(X[point], Y[point]))
else:
for point in range(start, points, 1):
outTmp.write('g1 x{0:.6f} y{1:.6f}\n'.format(X[point], Y[point]))
for point in range(0, start + 1, 1):
outTmp.write('g1 x{0:.6f} y{1:.6f}\n'.format(X[point], Y[point]))
# leadout points if required
if leadOutOffset:
if isExternal:
dir = [up, right]
else:
dir = [down, left]
xlcenter = X[start] + (leadOutOffset * numpy.cos(segAngle + dir[0]))
ylcenter = Y[start] + (leadOutOffset * numpy.sin(segAngle + dir[0]))
xlEnd = xlcenter + (leadOutOffset * numpy.cos(segAngle + dir[1]))
ylEnd = ylcenter + (leadOutOffset * numpy.sin(segAngle + dir[1]))
outTmp.write('g3 x{:.6f} y{:.6f} i{:.6f} j{:.6f}\n'.format(xlEnd, ylEnd, xlcenter - X[start], ylcenter - Y[start]))
# finish off and close files
outTmp.write('m5 $0\n')
outTmp.close()
outTmp = open(fTmp, 'r')
for line in outTmp:
outNgc.write(line)
outTmp.close()
if('\\n') in postAmble:
outNgc.write('(postamble)\n')
for l in postAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (postamble)\n'.format(postAmble))
outNgc.write('m2\n')
outNgc.close()
return False
|