1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
'''
triangle.py
Copyright (C) 2020, 2021, 2022, 2023, 2024 Phillip A Carter
Copyright (C) 2020, 2021, 2022, 2023, 2024 Gregory D Carl
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
'''
import os
import sys
import math
import gettext
for f in sys.path:
if '/lib/python' in f:
if '/usr' in f:
localeDir = 'usr/share/locale'
else:
localeDir = os.path.join('{}'.format(f.split('/lib')[0]),'share','locale')
break
gettext.install("linuxcnc", localedir=localeDir)
# Conv is the upstream calling module
def preview(Conv, fTmp, fNgc, fNgcBkp, \
matNumber, matName, \
preAmble, postAmble, \
leadinLength, leadoutLength, \
xOffset, yOffset, \
kerfWidth, isExternal, \
angA, angB, angC, sideA, sideB, sideC, angle):
error = ''
msg1 = _('entry is invalid')
valid, xOffset = Conv.conv_is_float(xOffset)
if not valid and xOffset:
msg0 = _('X ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, yOffset = Conv.conv_is_float(yOffset)
if not valid and yOffset:
msg0 = _('Y ORIGIN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadinLength = Conv.conv_is_float(leadinLength)
if not valid and leadinLength:
msg0 = _('LEAD IN')
error += '{} {}\n\n'.format(msg0, msg1)
valid, leadoutLength = Conv.conv_is_float(leadoutLength)
if not valid and leadoutLength:
msg0 = _('LEAD OUT')
error += '{} {}\n\n'.format(msg0, msg1)
valid, A = Conv.conv_is_float(angA)
if not valid and angA:
msg0 = _('A ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, B = Conv.conv_is_float(angB)
if not valid and angB:
msg0 = _('B ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, C = Conv.conv_is_float(angC)
if not valid and angC:
msg0 = _('C ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, a = Conv.conv_is_float(sideA)
if not valid and sideA:
msg0 = _('a LENGTH')
error += '{} {}\n\n'.format(msg0, msg1)
valid, b = Conv.conv_is_float(sideB)
if not valid and sideB:
msg0 = _('b LENGTH')
error += '{} {}\n\n'.format(msg0, msg1)
valid, c = Conv.conv_is_float(sideC)
if not valid and sideC:
msg0 = _('c LENGTH')
error += '{} {}\n\n'.format(msg0, msg1)
valid, angle = Conv.conv_is_float(angle)
if not valid and angle:
msg0 = _('ANGLE')
error += '{} {}\n\n'.format(msg0, msg1)
valid, kerfWidth = Conv.conv_is_float(kerfWidth)
if not valid:
msg = _('Invalid Kerf Width entry in material')
error += '{}\n\n'.format(msg)
if a and b and c:
if a + b <= c:
msg = _('c must be less than a+b')
error += '{}\n\n'.format(msg)
if a + c <= b:
msg = _('b must be less than a+c')
error += '{}\n\n'.format(msg)
if b + c <= a:
msg = _('a must be less than b+c')
error += '{}\n\n'.format(msg)
if A <= 0 and isinstance(A, float):
msg = _('A ANGLE cannot be zero or less')
error += '{}\n\n'.format(msg)
if B <= 0 and isinstance(B, float):
msg = _('B ANGLE cannot be zero or less')
error += '{}\n\n'.format(msg)
if C <= 0 and isinstance(C, float):
msg = _('C ANGLE cannot be zero or less')
error += '{}\n\n'.format(msg)
if A >= 180 and isinstance(A, float):
msg = _('A ANGLE cannot be 180 or more')
error += '{}\n\n'.format(msg)
if B >= 180 and isinstance(B, float):
msg = _('B ANGLE cannot be 180 or more')
error += '{}\n\n'.format(msg)
if C >= 180 and isinstance(C, float):
msg = _('C ANGLE cannot be 180 or more')
error += '{}\n\n'.format(msg)
if a <= 0 and isinstance(a, float):
msg = _('a LENGTH cannot be zero or less')
error += '{}\n\n'.format(msg)
if b <= 0 and isinstance(b, float):
msg = _('b LENGTH cannot be zero or less')
error += '{}\n\n'.format(msg)
if c <= 0 and isinstance(c, float):
msg = _('c LENGTH cannot be zero or less')
error += '{}\n\n'.format(msg)
if A and B and C:
if not a and not b and not c:
msg = _('"a" or "b" or "c" are required')
error += '{}\n\n'.format(msg)
if A + B + C != 180:
msg = _('"A" + "B" + "C" must equal 180')
error += '{}\n\n'.format(msg)
if error:
return error
angle = math.radians(angle)
A = math.radians(A)
B = math.radians(B)
C = math.radians(C)
leadInOffset = math.sin(math.radians(45)) * leadinLength
leadOutOffset = math.sin(math.radians(45)) * leadoutLength
if A and B and C:
if a:
b = a / math.sin(A) * math.sin(B)
c = a / math.sin(A) * math.sin(C)
elif b:
a = b / math.sin(B) * math.sin(A)
c = b / math.sin(B) * math.sin(C)
elif c:
a = c / math.sin(C) * math.sin(A)
b = c / math.sin(C) * math.sin(B)
elif a and b and c:
A = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
B = math.acos((a ** 2 + c ** 2 - b ** 2) / (2 * a * c))
C = math.acos((a ** 2 + b ** 2 - c ** 2) / (2 * a * b))
elif a and b and C:
c = math.sqrt((a ** 2 + b ** 2) - 2 * a * b * math.cos(C))
A = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
B = math.acos((a ** 2 + c ** 2 - b ** 2) / (2 * a * c))
elif a and B and c:
b = math.sqrt((a ** 2 + c ** 2) - 2 * a * c * math.cos(B))
A = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c))
C = math.acos((a ** 2 + b ** 2 - c ** 2) / (2 * a * b))
elif A and b and c:
a = math.sqrt((b ** 2 + c ** 2) - 2 * b * c * math.cos(A))
B = math.acos((a ** 2 + c ** 2 - b ** 2) / (2 * a * c))
C = math.acos((a ** 2 + b ** 2 - c ** 2) / (2 * a * b))
else:
msg0 = 'MINIMUM REQUIREMENTS:\n'\
'In processing order are:\n\n'\
'1: "A" + "B" + "C" + ("a" or "b" or "c") \n\n'\
'2: "a" + "b" + "c"\n\n'\
'3: "a" + "b" + "C"\n\n'\
'4: "a" + "B" + "c"\n\n'\
'5: "A" + "b" + "c"\n'
error += '{}\n\n'.format(msg0)
return error
right = math.radians(0)
up = math.radians(90)
left = math.radians(180)
down = math.radians(270)
# get start point
BX = xOffset
BY = yOffset
CX = round(BX + a * math.cos(angle), 3)
CY = round(BY + a * math.sin(angle), 3)
Bx, By = get_offset_coordinates([CX,CY], [BX,BY], B, kerfWidth, isExternal)
BX = Bx + (BX - Bx) * 2
BY = By + (BY - By) * 2
# get remaining points
CX = round(BX + a * math.cos(angle), 3)
CY = round(BY + a * math.sin(angle), 3)
AX = round(BX + c * math.cos(angle + B), 3)
AY = round(BY + c * math.sin(angle + B), 3)
# get offset points
Ax, Ay = get_offset_coordinates([BX,BY], [AX,AY], A, kerfWidth, isExternal)
Bx, By = get_offset_coordinates([CX,CY], [BX,BY], B, kerfWidth, isExternal)
Cx, Cy = get_offset_coordinates([AX,AY], [CX,CY], C, kerfWidth, isExternal)
# get leadin/leadout point
hypotLength = math.sqrt((Ax - Cx) ** 2 + (Ay - Cy) ** 2)
if Ax < Cx:
hypotAngle = left - math.atan((Ay - Cy) / (Cx - Ax))
elif Ax > Cx:
hypotAngle = right - math.atan((Ay - Cy) / (Cx - Ax))
else:
hypotAngle = up
xS = Cx + (hypotLength / 2) * math.cos(hypotAngle)
yS = Cy + (hypotLength / 2) * math.sin(hypotAngle)
# set leadin direction
if isExternal:
if Ay >= By:
dir = [up, right]
else:
dir = [down, left]
else:
if Ay >= By:
dir = [down, left]
else:
dir = [up, right]
outTmp = open(fTmp, 'w')
outNgc = open(fNgc, 'w')
inWiz = open(fNgcBkp, 'r')
for line in inWiz:
if '(new conversational file)' in line:
if('\\n') in preAmble:
outNgc.write('(preamble)\n')
for l in preAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (preamble)\n'.format(preAmble))
break
elif '(postamble)' in line:
break
elif 'm2' in line.lower() or 'm30' in line.lower():
continue
outNgc.write(line)
outTmp.write('\n(conversational triangle)\n')
outTmp.write(';using material #{}: {}\n'.format(matNumber, matName))
outTmp.write('M190 P{}\n'.format(matNumber))
outTmp.write('M66 P3 L3 Q1\n')
outTmp.write('f#<_hal[plasmac.cut-feed-rate]>\n')
if leadInOffset > 0:
xlCentre = xS + (leadInOffset * math.cos(hypotAngle - dir[0]))
ylCentre = yS + (leadInOffset * math.sin(hypotAngle - dir[0]))
xlStart = xlCentre + (leadInOffset * math.cos(hypotAngle - dir[1]))
ylStart = ylCentre + (leadInOffset * math.sin(hypotAngle - dir[1]))
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xlStart, ylStart))
outTmp.write('m3 $0 s1\n')
outTmp.write('g3 x{:.6f} y{:.6f} i{:.6f} j{:.6f}\n'.format(xS, yS , xlCentre - xlStart, ylCentre - ylStart))
else:
outTmp.write('g0 x{:.6f} y{:.6f}\n'.format(xS, yS))
outTmp.write('m3 $0 s1\n')
if isExternal:
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Cx , Cy))
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Bx , By))
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Ax , Ay))
else:
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Ax , Ay))
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Bx , By))
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(Cx , Cy))
outTmp.write('g1 x{:.6f} y{:.6f}\n'.format(xS, yS))
# set leadout direction
if leadOutOffset > 0:
if isExternal:
if Ay >= By:
dir = [up, left]
else:
dir = [down, right]
else:
if Ay >= By:
dir = [down, right]
else:
dir = [up, left]
xlCentre = xS + (leadOutOffset * math.cos(hypotAngle - dir[0]))
ylCentre = yS + (leadOutOffset * math.sin(hypotAngle - dir[0]))
xlEnd = xlCentre + (leadOutOffset * math.cos(hypotAngle - dir[1]))
ylEnd = ylCentre + (leadOutOffset * math.sin(hypotAngle - dir[1]))
outTmp.write('g3 x{:.6f} y{:.6f} i{:.6f} j{:.6f}\n'.format(xlEnd, ylEnd , xlCentre - xS, ylCentre - yS))
outTmp.write('m5 $0\n')
outTmp.close()
outTmp = open(fTmp, 'r')
for line in outTmp:
outNgc.write(line)
outTmp.close()
if('\\n') in postAmble:
outNgc.write('(postamble)\n')
for l in postAmble.split('\\n'):
outNgc.write('{}\n'.format(l))
else:
outNgc.write('\n{} (postamble)\n'.format(postAmble))
outNgc.write('m2\n')
outNgc.close()
return False
def get_offset_coordinates(fromPoint, thisPoint, angle, kerfWidth, isExternal):
kOffset = kerfWidth / 2
inAng = math.atan2(thisPoint[1] - fromPoint[1], thisPoint[0] - fromPoint[0])
ang = math.radians(90) - (angle / 2)
offset = math.tan(ang) * kOffset
if isExternal:
x = round(thisPoint[0] + offset * math.cos(inAng), 3)
y = round(thisPoint[1] + offset * math.sin(inAng), 3)
x = round(x + kOffset * math.cos(inAng + math.radians(90)), 3)
y = round(y + kOffset * math.sin(inAng + math.radians(90)), 3)
else:
x = round(thisPoint[0] - offset * math.cos(inAng), 3)
y = round(thisPoint[1] - offset * math.sin(inAng), 3)
x = round(x + kOffset * math.cos(inAng + math.radians(-90)), 3)
y = round(y + kOffset * math.sin(inAng + math.radians(-90)), 3)
return x, y
|