1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
# This is a component of emc2
# Copyright 2007 Jeff Epler <jepler@unpythonic.net>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
import sys, math
def dist_lseg(l1, l2, p):
"Compute the 3D distance from the line segment l1..l2 to the point p."
x0, y0, z0 = l1
xa, ya, za = l2
xi, yi, zi = p
dx = xa-x0
dy = ya-y0
dz = za-z0
d2 = dx*dx + dy*dy + dz*dz
if d2 == 0: return 0
t = (dx * (xi-x0) + dy * (yi-y0) + dz * (zi-z0)) / d2
if t < 0: t = 0
if t > 1: t = 1
dist2 = (xi - x0 - t*dx)**2 + (yi - y0 - t*dy)**2 + (zi - z0 - t*dz)**2
return dist2 ** .5
def rad1(x1,y1,x2,y2,x3,y3):
x12 = x1-x2
y12 = y1-y2
x23 = x2-x3
y23 = y2-y3
x31 = x3-x1
y31 = y3-y1
den = abs(x12 * y23 - x23 * y12)
if abs(den) < 1e-5: return sys.maxsize
#print "rad1", x1, y1, x2, y2, x3, y3
math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / den
return math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / den
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self): return "<%f,%f>" % (self.x, self.y)
def __sub__(self, other):
return Point(self.x - other.x, self.y - other.y)
def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)
def __mul__(self, other):
return Point(self.x * other, self.y * other)
__rmul__ = __mul__
def cross(self, other):
return self.x * other.y - self.y * other.x
def dot(self, other):
return self.x * other.x + self.y * other.y
def mag(self):
return hypot(self.x, self.y)
def mag2(self):
return self.x**2 + self.y**2
def cent1(x1,y1,x2,y2,x3,y3):
P1 = Point(x1,y1)
P2 = Point(x2,y2)
P3 = Point(x3,y3)
den = abs((P1-P2).cross(P2-P3))
if abs(den) < 1e-5: return sys.maxsize, sys.maxsize
alpha = (P2-P3).mag2() * (P1-P2).dot(P1-P3) / 2 / den / den
beta = (P1-P3).mag2() * (P2-P1).dot(P2-P3) / 2 / den / den
gamma = (P1-P2).mag2() * (P3-P1).dot(P3-P2) / 2 / den / den
Pc = alpha * P1 + beta * P2 + gamma * P3
#print >>sys.stderr, "cent1", P1, P2, P3, Pc
#print >>sys.stderr, "\t", alpha, beta, gamma
return Pc.x, Pc.y
def arc_center(plane, p1, p2, p3):
x1, y1, z1 = p1
x2, y2, z2 = p2
x3, y3, z3 = p3
if plane == 17: return cent1(x1,y1,x2,y2,x3,y3)
if plane == 18: return cent1(x1,z1,x2,z2,x3,z3)
if plane == 19: return cent1(y1,z1,y2,z2,y3,z3)
def arc_rad(plane, P1, P2, P3):
if plane is None: return sys.maxsize
x1, y1, z1 = P1
x2, y2, z2 = P2
x3, y3, z3 = P3
if plane == 17: return rad1(x1,y1,x2,y2,x3,y3)
if plane == 18: return rad1(x1,z1,x2,z2,x3,z3)
if plane == 19: return rad1(y1,z1,y2,z2,y3,z3)
return None, 0
def get_pts(plane, xxx_todo_changeme):
(x,y,z) = xxx_todo_changeme
if plane == 17: return x,y
if plane == 18: return x,z
if plane == 19: return y,z
def one_quadrant(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1)
x2, y2 = get_pts(plane, p2)
x3, y3 = get_pts(plane, p3)
def sign(x):
if abs(x) < 1e-5: return 0
if x < 0: return -1
return 1
signs = set((
(sign(x1-xc),sign(y1-yc)),
(sign(x2-xc),sign(y2-yc)),
(sign(x3-xc),sign(y3-yc))
))
if len(signs) == 1: return True
if (1,1) in signs:
signs.discard((1,0))
signs.discard((0,1))
if (1,-1) in signs:
signs.discard((1,0))
signs.discard((0,-1))
if (-1,1) in signs:
signs.discard((-1,0))
signs.discard((0,1))
if (-1,-1) in signs:
signs.discard((-1,0))
signs.discard((0,-1))
if len(signs) == 1: return True
def arc_dir(plane, c, p1, p2, p3):
xc, yc = c
x1, y1 = get_pts(plane, p1)
x2, y2 = get_pts(plane, p2)
x3, y3 = get_pts(plane, p3)
theta_start = math.atan2(y1-yc, x1-xc)
theta_mid = math.atan2(y2-yc, x2-xc)
theta_end = math.atan2(y3-yc, x3-xc)
if theta_mid < theta_start:
theta_mid = theta_mid + 2 * math.pi
while theta_end < theta_mid:
theta_end = theta_end + 2 * math.pi
return theta_end < 2 * math.pi
def arc_fmt(plane, c1, c2, p1):
x, y, z = p1
if plane == 17: return "I%.4f J%.4f" % (c1-x, c2-y)
if plane == 18: return "I%.4f K%.4f" % (c1-x, c2-z)
if plane == 19: return "J%.4f K%.4f" % (c1-y, c2-z)
def douglas(st, tolerance=.001, plane=None, _first=True):
"""\
Perform Douglas-Peucker simplification on the path 'st' with the specified
tolerance. The '_first' argument is for internal use only.
The Douglas-Peucker simplification algorithm finds a subset of the input points
whose path is never more than 'tolerance' away from the original input path.
If 'plane' is specified as 17, 18, or 19, it may find helical arcs in the given
plane in addition to lines. Note that if there is movement in the plane
perpendicular to the arc, it will be distorted, so 'plane' should usually
be specified only when there is only movement on 2 axes
"""
if len(st) == 1:
yield "G1", st[0], None
return
l1 = st[0]
l2 = st[-1]
worst_dist = 0
worst = 0
min_rad = sys.maxsize
max_arc = -1
ps = st[0]
pe = st[-1]
for i, p in enumerate(st):
if p is l1 or p is l2: continue
dist = dist_lseg(l1, l2, p)
if dist > worst_dist:
worst = i
worst_dist = dist
rad = arc_rad(plane, ps, p, pe)
#print >>sys.stderr, "rad", rad, max_arc, min_rad
if rad < min_rad:
max_arc = i
min_rad = rad
worst_arc_dist = 0
if min_rad != sys.maxsize:
c1, c2 = arc_center(plane, ps, st[max_arc], pe)
lx, ly, lz = st[0]
if one_quadrant(plane, (c1, c2), ps, st[max_arc], pe):
for i, (x,y,z) in enumerate(st):
if plane == 17: dist = abs(math.hypot(c1-x, c2-y) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-x, c2-z) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-y, c2-z) - min_rad)
else: dist = sys.maxsize
#print >>sys.stderr, "wad", dist, worst_arc_dist
if dist > worst_arc_dist: worst_arc_dist = dist
mx = (x+lx)/2
my = (y+ly)/2
mz = (z+lz)/2
if plane == 17: dist = abs(math.hypot(c1-mx, c2-my) - min_rad)
elif plane == 18: dist = abs(math.hypot(c1-mx, c2-mz) - min_rad)
elif plane == 19: dist = abs(math.hypot(c1-my, c2-mz) - min_rad)
else: dist = sys.maxsize
#if dist > worst_arc_dist: worst_arc_dist = dist
lx, ly, lz = x, y, z
else:
worst_arc_dist = sys.maxsize
else:
worst_arc_dist = sys.maxsize
#if worst_arc_dist != sys.maxint:
#print >>sys.stderr, "douglas", len(st), "\n\t", st[0], "\n\t", st[max_arc], "\n\t", st[-1]
#print >>sys.stderr, "\t", worst_arc_dist, worst_dist
#print >>sys.stderr, "\t", c1, c2
if worst_arc_dist < tolerance and worst_arc_dist < worst_dist:
ccw = arc_dir(plane, (c1, c2), ps, st[max_arc], pe)
if plane == 18: ccw = not ccw # wtf?
yield "G1", ps, None
if ccw:
yield "G3", st[-1], arc_fmt(plane, c1, c2, ps)
else:
yield "G2", st[-1], arc_fmt(plane, c1, c2, ps)
elif worst_dist > tolerance:
if _first: yield "G1", st[0], None
for i in douglas(st[:worst+1], tolerance, plane, False):
yield i
yield "G1", st[worst], None
for i in douglas(st[worst:], tolerance, plane, False):
yield i
if _first: yield "G1", st[-1], None
else:
if _first: yield "G1", st[0], None
if _first: yield "G1", st[-1], None
class Gcode:
"For creating rs274ngc files"
def __init__(self, homeheight = 1.5, safetyheight = 0.04, tolerance=0.001,
spindle_speed=1000, units="G20",
target=lambda s: sys.stdout.write(s + "\n")):
self.lastx = self.lasty = self.lastz = self.lasta = None
self.lastgcode = self.lastfeed = None
self.homeheight = homeheight
self.safetyheight = self.lastz = safetyheight
self.tolerance = tolerance
self.units = units
self.cuts = []
self.write = target
self.time = 0
self.spindle_speed = spindle_speed
self.plane = None
def set_plane(self, p):
assert p in (17,18,19)
if p != self.plane:
self.plane = p
self.write("G%d" % p)
def begin(self):
"""\
This function moves to the safety height, sets many modal codes to default
values, turns the spindle on at 1000RPM, and waits for it to come up to
speed."""
self.write(self.units)
self.write("G0 Z%.4f" % (self.safetyheight))
self.write("G17 G40")
self.write("G80 G90 G94")
self.write("S%d M3" % (self.spindle_speed))
self.write("G04 P3")
def flush(self):
"""\
If any 'cut' moves are stored up, send them to the simplification algorithm
and actually output them.
This function is usually used internally (e.g., when changing from a cut
to a rapid) but can be called manually as well. For instance, when
a contouring program reaches the end of a row, it may be desirable to enforce
that the last 'cut' coordinate is actually in the output file, and it may
give better performance because this means that the simplification algorithm
will examine fewer points per run."""
if not self.cuts: return
for move, (x, y, z), cent in douglas(self.cuts, self.tolerance, self.plane):
if cent:
self.write("%s X%.4f Y%.4f Z%.4f %s" % (move, x, y, z, cent))
self.lastgcode = None
self.lastx = x
self.lasty = y
self.lastz = z
else:
self.move_common(x, y, z, gcode="G1")
self.cuts = []
def end(self):
"""End the program"""
self.flush()
self.safety()
self.write("M2")
def exactpath(self):
"""\
Set exact path mode. Note that unless self.tolerance is set to zero,
the simplification algorithm may still skip over specified points."""
self.write("G61")
def continuous(self, tolerance=0.0):
"Set continuous mode."
if tolerance > 0.0:
self.write("G64 P%.4f" % tolerance)
else:
self.write("G64")
def rapid(self, x=None, y=None, z=None, a=None):
"Perform a rapid move to the specified coordinates"
self.flush()
self.move_common(x, y, z, a, "G0")
def move_common(self, x=None, y=None, z=None, a=None, gcode="G0"):
"An internal function used for G0 and G1 moves"
gcodestring = xstring = ystring = zstring = astring = ""
if x == None: x = self.lastx
if y == None: y = self.lasty
if z == None: z = self.lastz
if a == None: a = self.lasta
if x != self.lastx:
xstring = " X%.4f" % (x)
self.lastx = x
if y != self.lasty:
ystring = " Y%.4f" % (y)
self.lasty = y
if z != self.lastz:
zstring = " Z%.4f" % (z)
self.lastz = z
if a != self.lasta:
astring = " A%.4f" % (a)
self.lasta = a
if xstring == ystring == zstring == astring == "":
return
if gcode != self.lastgcode:
gcodestring = gcode
self.lastgcode = gcode
cmd = "".join([gcodestring, xstring, ystring, zstring, astring])
if cmd:
self.write(cmd)
def set_feed(self, feed):
"Set the feed rate to the given value"
self.flush()
self.write("F%.4f" % feed)
def cut(self, x=None, y=None, z=None):
"Perform a cutting move at the specified feed rate to the specified coordinates"
if self.cuts:
lastx, lasty, lastz = self.cuts[-1]
else:
lastx, lasty, lastz = self.lastx, self.lasty, self.lastz
if x is None: x = lastx
if y is None: y = lasty
if z is None: z = lastz
self.cuts.append([x,y,z])
def home(self):
"Go to the 'home' height at rapid speed"
self.flush()
self.rapid(z=self.homeheight)
def safety(self):
"Go to the 'safety' height at rapid speed"
self.flush()
self.rapid(z=self.safetyheight)
|