1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/**
* @file pi.c
* @brief Implements a Proportional Integral clock servo.
* @note Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include "config.h"
#include "pi.h"
#include "print.h"
#include "servo_private.h"
#define HWTS_KP_SCALE 0.7
#define HWTS_KI_SCALE 0.3
#define SWTS_KP_SCALE 0.1
#define SWTS_KI_SCALE 0.001
#define MAX_KP_NORM_MAX 1.0
#define MAX_KI_NORM_MAX 2.0
#define FREQ_EST_MARGIN 0.001
struct pi_servo {
struct servo servo;
int64_t offset[2];
uint64_t local[2];
double drift;
double kp;
double ki;
double last_freq;
int count;
/* configuration: */
double configured_pi_kp;
double configured_pi_ki;
double configured_pi_kp_scale;
double configured_pi_kp_exponent;
double configured_pi_kp_norm_max;
double configured_pi_ki_scale;
double configured_pi_ki_exponent;
double configured_pi_ki_norm_max;
};
static void pi_destroy(struct servo *servo)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
free(s);
}
static double pi_sample(struct servo *servo,
int64_t offset,
uint64_t local_ts,
double weight,
enum servo_state *state)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
double ki_term, ppb = s->last_freq;
double freq_est_interval, localdiff;
switch (s->count) {
case 0:
s->offset[0] = offset;
s->local[0] = local_ts;
*state = SERVO_UNLOCKED;
s->count = 1;
break;
case 1:
s->offset[1] = offset;
s->local[1] = local_ts;
/* Make sure the first sample is older than the second. */
if (s->local[0] >= s->local[1]) {
*state = SERVO_UNLOCKED;
s->count = 0;
break;
}
/* Wait long enough before estimating the frequency offset. */
localdiff = (s->local[1] - s->local[0]) / 1e9;
localdiff += localdiff * FREQ_EST_MARGIN;
freq_est_interval = 0.016 / s->ki;
if (freq_est_interval > 1000.0) {
freq_est_interval = 1000.0;
}
if (localdiff < freq_est_interval) {
*state = SERVO_UNLOCKED;
break;
}
/* Adjust drift by the measured frequency offset. */
s->drift += (1e9 - s->drift) * (s->offset[1] - s->offset[0]) /
(s->local[1] - s->local[0]);
if (s->drift < -servo->max_frequency)
s->drift = -servo->max_frequency;
else if (s->drift > servo->max_frequency)
s->drift = servo->max_frequency;
if ((servo->first_update &&
servo->first_step_threshold &&
servo->first_step_threshold < llabs(offset)) ||
(servo->step_threshold &&
servo->step_threshold < llabs(offset)))
*state = SERVO_JUMP;
else
*state = SERVO_LOCKED;
ppb = s->drift;
s->count = 2;
break;
case 2:
/*
* reset the clock servo when offset is greater than the max
* offset value. Note that the clock jump will be performed in
* step 1, so it is not necessary to have clock jump
* immediately. This allows re-calculating drift as in initial
* clock startup.
*/
if (servo->step_threshold &&
servo->step_threshold < llabs(offset)) {
*state = SERVO_UNLOCKED;
s->count = 0;
break;
}
ki_term = s->ki * offset * weight;
ppb = s->kp * offset * weight + s->drift + ki_term;
if (ppb < -servo->max_frequency) {
ppb = -servo->max_frequency;
} else if (ppb > servo->max_frequency) {
ppb = servo->max_frequency;
} else {
s->drift += ki_term;
}
*state = SERVO_LOCKED;
break;
}
s->last_freq = ppb;
return ppb;
}
static void pi_sync_interval(struct servo *servo, double interval)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
s->kp = s->configured_pi_kp_scale * pow(interval, s->configured_pi_kp_exponent);
if (s->kp > s->configured_pi_kp_norm_max / interval)
s->kp = s->configured_pi_kp_norm_max / interval;
s->ki = s->configured_pi_ki_scale * pow(interval, s->configured_pi_ki_exponent);
if (s->ki > s->configured_pi_ki_norm_max / interval)
s->ki = s->configured_pi_ki_norm_max / interval;
pr_debug("PI servo: sync interval %.3f kp %.3f ki %.6f",
interval, s->kp, s->ki);
}
static void pi_reset(struct servo *servo)
{
struct pi_servo *s = container_of(servo, struct pi_servo, servo);
s->count = 0;
}
struct servo *pi_servo_create(struct config *cfg, double fadj, int sw_ts)
{
struct pi_servo *s;
s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->servo.destroy = pi_destroy;
s->servo.sample = pi_sample;
s->servo.sync_interval = pi_sync_interval;
s->servo.reset = pi_reset;
s->drift = fadj;
s->last_freq = fadj;
s->kp = 0.0;
s->ki = 0.0;
s->configured_pi_kp = config_get_double(cfg, NULL, "pi_proportional_const");
s->configured_pi_ki = config_get_double(cfg, NULL, "pi_integral_const");
s->configured_pi_kp_scale = config_get_double(cfg, NULL, "pi_proportional_scale");
s->configured_pi_kp_exponent =
config_get_double(cfg, NULL, "pi_proportional_exponent");
s->configured_pi_kp_norm_max =
config_get_double(cfg, NULL, "pi_proportional_norm_max");
s->configured_pi_ki_scale =
config_get_double(cfg, NULL, "pi_integral_scale");
s->configured_pi_ki_exponent =
config_get_double(cfg, NULL, "pi_integral_exponent");
s->configured_pi_ki_norm_max =
config_get_double(cfg, NULL, "pi_integral_norm_max");
if (s->configured_pi_kp && s->configured_pi_ki) {
/* Use the constants as configured by the user without
adjusting for sync interval unless they make the servo
unstable. */
s->configured_pi_kp_scale = s->configured_pi_kp;
s->configured_pi_ki_scale = s->configured_pi_ki;
s->configured_pi_kp_exponent = 0.0;
s->configured_pi_ki_exponent = 0.0;
s->configured_pi_kp_norm_max = MAX_KP_NORM_MAX;
s->configured_pi_ki_norm_max = MAX_KI_NORM_MAX;
} else if (!s->configured_pi_kp_scale || !s->configured_pi_ki_scale) {
if (sw_ts) {
s->configured_pi_kp_scale = SWTS_KP_SCALE;
s->configured_pi_ki_scale = SWTS_KI_SCALE;
} else {
s->configured_pi_kp_scale = HWTS_KP_SCALE;
s->configured_pi_ki_scale = HWTS_KI_SCALE;
}
}
return &s->servo;
}
|