1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/**
* @file linreg.c
* @brief Implements an adaptive servo based on linear regression.
* @note Copyright (C) 2014 Miroslav Lichvar <mlichvar@redhat.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <stdlib.h>
#include <math.h>
#include "linreg.h"
#include "print.h"
#include "servo_private.h"
/* Maximum and minimum number of points used in regression,
defined as a power of 2 */
#define MAX_SIZE 6
#define MIN_SIZE 2
#define MAX_POINTS (1 << MAX_SIZE)
/* Smoothing factor used for long-term prediction error */
#define ERR_SMOOTH 0.02
/* Number of updates used for initialization */
#define ERR_INITIAL_UPDATES 10
/* Maximum ratio of two err values to be considered equal */
#define ERR_EQUALS 1.05
/* Uncorrected local time vs remote time */
struct point {
uint64_t x;
uint64_t y;
double w;
};
struct result {
/* Slope and intercept from latest regression */
double slope;
double intercept;
/* Exponential moving average of prediction error */
double err;
/* Number of initial err updates */
int err_updates;
};
struct linreg_servo {
struct servo servo;
/* Circular buffer of points */
struct point points[MAX_POINTS];
/* Current time in x, y */
struct point reference;
/* Number of stored points */
unsigned int num_points;
/* Index of the newest point */
unsigned int last_point;
/* Remainder from last update of reference.x */
double x_remainder;
/* Local time stamp of last update */
uint64_t last_update;
/* Regression results for all sizes */
struct result results[MAX_SIZE - MIN_SIZE + 1];
/* Selected size */
unsigned int size;
/* Current frequency offset of the clock */
double clock_freq;
/* Expected interval between updates */
double update_interval;
/* Current ratio between remote and local frequency */
double frequency_ratio;
/* Upcoming leap second */
int leap;
};
static void linreg_destroy(struct servo *servo)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
free(s);
}
static void move_reference(struct linreg_servo *s, int64_t x, int64_t y)
{
struct result *res;
unsigned int i;
s->reference.x += x;
s->reference.y += y;
/* Update intercepts for new reference */
for (i = MIN_SIZE; i <= MAX_SIZE; i++) {
res = &s->results[i - MIN_SIZE];
res->intercept += x * res->slope - y;
}
}
static void update_reference(struct linreg_servo *s, uint64_t local_ts)
{
double x_interval;
int64_t y_interval;
if (s->last_update) {
y_interval = local_ts - s->last_update;
/* Remove current frequency correction from the interval */
x_interval = y_interval / (1.0 + s->clock_freq / 1e9);
x_interval += s->x_remainder;
s->x_remainder = x_interval - (int64_t)x_interval;
move_reference(s, (int64_t)x_interval, y_interval);
}
s->last_update = local_ts;
}
static void add_sample(struct linreg_servo *s, int64_t offset, double weight)
{
s->last_point = (s->last_point + 1) % MAX_POINTS;
s->points[s->last_point].x = s->reference.x;
s->points[s->last_point].y = s->reference.y - offset;
s->points[s->last_point].w = weight;
if (s->num_points < MAX_POINTS)
s->num_points++;
}
static void regress(struct linreg_servo *s)
{
double x, y, y0, e, x_sum, y_sum, xy_sum, x2_sum, w, w_sum;
unsigned int i, l, n, size;
struct result *res;
x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; w_sum = 0.0;
i = 0;
y0 = (int64_t)(s->points[s->last_point].y - s->reference.y);
for (size = MIN_SIZE; size <= MAX_SIZE; size++) {
n = 1 << size;
if (n > s->num_points)
/* Not enough points for this size */
break;
res = &s->results[size - MIN_SIZE];
/* Update moving average of the prediction error */
if (res->slope) {
e = fabs(res->intercept - y0);
if (res->err_updates < ERR_INITIAL_UPDATES) {
res->err *= res->err_updates;
res->err += e;
res->err_updates++;
res->err /= res->err_updates;
} else {
res->err += ERR_SMOOTH * (e - res->err);
}
}
for (; i < n; i++) {
/* Iterate points from newest to oldest */
l = (MAX_POINTS + s->last_point - i) % MAX_POINTS;
x = (int64_t)(s->points[l].x - s->reference.x);
y = (int64_t)(s->points[l].y - s->reference.y);
w = s->points[l].w;
x_sum += x * w;
y_sum += y * w;
xy_sum += x * y * w;
x2_sum += x * x * w;
w_sum += w;
}
/* Get new intercept and slope */
res->slope = (xy_sum - x_sum * y_sum / w_sum) /
(x2_sum - x_sum * x_sum / w_sum);
res->intercept = (y_sum - res->slope * x_sum) / w_sum;
}
}
static void update_size(struct linreg_servo *s)
{
struct result *res;
double best_err;
int size, best_size;
/* Find largest size with smallest prediction error */
best_size = 0;
best_err = 0.0;
for (size = MIN_SIZE; size <= MAX_SIZE; size++) {
res = &s->results[size - MIN_SIZE];
if ((!best_size && res->slope) ||
(best_err * ERR_EQUALS > res->err &&
res->err_updates >= ERR_INITIAL_UPDATES)) {
best_size = size;
best_err = res->err;
}
}
s->size = best_size;
}
static double linreg_sample(struct servo *servo,
int64_t offset,
uint64_t local_ts,
double weight,
enum servo_state *state)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
struct result *res;
int corr_interval;
/*
* The current time and the time when will be the frequency of the
* clock actually updated is assumed here to be equal to local_ts
* (which is the time stamp of the received sync message). As long as
* the differences are smaller than the update interval, the loop
* should be robust enough to handle this simplification.
*/
update_reference(s, local_ts);
add_sample(s, offset, weight);
regress(s);
update_size(s);
if (s->size < MIN_SIZE) {
/* Not enough points, wait for more */
*state = SERVO_UNLOCKED;
return -s->clock_freq;
}
res = &s->results[s->size - MIN_SIZE];
pr_debug("linreg: points %d slope %.9f intercept %.0f err %.0f",
1 << s->size, res->slope, res->intercept, res->err);
if ((servo->first_update &&
servo->first_step_threshold &&
servo->first_step_threshold < fabs(res->intercept)) ||
(servo->step_threshold &&
servo->step_threshold < fabs(res->intercept))) {
/* The clock will be stepped by offset */
move_reference(s, 0, -offset);
s->last_update -= offset;
*state = SERVO_JUMP;
} else {
*state = SERVO_LOCKED;
}
/* Set clock frequency to the slope */
s->clock_freq = 1e9 * (res->slope - 1.0);
/*
* Adjust the frequency to correct the time offset. Use longer
* correction interval with larger sizes to reduce the frequency error.
* The update interval is assumed to be not affected by the frequency
* adjustment. If it is (e.g. phc2sys controlling the system clock), a
* correction slowing down the clock will result in an overshoot. With
* the system clock's maximum adjustment of 10% that's acceptable.
*/
corr_interval = s->size <= 4 ? 1 : s->size / 2;
s->clock_freq += res->intercept / s->update_interval / corr_interval;
/* Clamp the frequency to the allowed maximum */
if (s->clock_freq > servo->max_frequency)
s->clock_freq = servo->max_frequency;
else if (s->clock_freq < -servo->max_frequency)
s->clock_freq = -servo->max_frequency;
s->frequency_ratio = res->slope / (1.0 + s->clock_freq / 1e9);
return -s->clock_freq;
}
static void linreg_sync_interval(struct servo *servo, double interval)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
s->update_interval = interval;
}
static void linreg_reset(struct servo *servo)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
unsigned int i;
s->num_points = 0;
s->last_update = 0;
s->size = 0;
s->frequency_ratio = 1.0;
for (i = MIN_SIZE; i <= MAX_SIZE; i++) {
s->results[i - MIN_SIZE].slope = 0.0;
s->results[i - MIN_SIZE].err_updates = 0;
}
}
static double linreg_rate_ratio(struct servo *servo)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
return s->frequency_ratio;
}
static void linreg_leap(struct servo *servo, int leap)
{
struct linreg_servo *s = container_of(servo, struct linreg_servo, servo);
/*
* Move reference when leap second is applied to the reference
* time as if the clock was stepped in the opposite direction
*/
if (s->leap && !leap)
move_reference(s, 0, s->leap * 1000000000);
s->leap = leap;
}
struct servo *linreg_servo_create(double fadj)
{
struct linreg_servo *s;
s = calloc(1, sizeof(*s));
if (!s)
return NULL;
s->servo.destroy = linreg_destroy;
s->servo.sample = linreg_sample;
s->servo.sync_interval = linreg_sync_interval;
s->servo.reset = linreg_reset;
s->servo.rate_ratio = linreg_rate_ratio;
s->servo.leap = linreg_leap;
s->clock_freq = -fadj;
s->frequency_ratio = 1.0;
return &s->servo;
}
|