File: gmskmodem_test.c

package info (click to toggle)
liquid-dsp 1.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 7,376 kB
  • sloc: ansic: 93,650; sh: 3,208; makefile: 1,171; python: 95; asm: 11
file content (174 lines) | stat: -rw-r--r-- 5,894 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// 
// gmskmodem_test.c
//

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>
#include "liquid.h"

#define OUTPUT_FILENAME "gmskmodem_test.m"

// print usage/help message
void usage()
{
    printf("gmskmodem_test -- Gaussian minimum-shift keying modem example\n");
    printf("options (default values in <>):\n");
    printf("  u/h   : print usage/help\n");
    printf("  k     : samples/symbol <4>\n");
    printf("  m     : filter delay [symbols], <3>\n");
    printf("  n     : number of data symbols <32>\n");
    printf("  b     : bandwidth-time product, 0 <= b <= 1, <0.3>\n");
    printf("  s     : SNR [dB] <30>\n");
}

int main(int argc, char*argv[]) {
    // options
    unsigned int k=4;                   // filter samples/symbol
    unsigned int m=3;                   // filter delay (symbols)
    float BT=0.5f;                      // bandwidth-time product
    unsigned int num_data_symbols = 32; // number of data symbols
    float SNRdB = 30.0f;                // signal-to-noise ratio [dB]

    int dopt;
    while ((dopt = getopt(argc,argv,"uhk:m:n:b:s:")) != EOF) {
        switch (dopt) {
        case 'u':
        case 'h': usage();              return 0;
        case 'k': k = atoi(optarg); break;
        case 'm': m = atoi(optarg); break;
        case 'n': num_data_symbols = atoi(optarg); break;
        case 'b': BT = atof(optarg); break;
        case 's': SNRdB = atof(optarg); break;
        default:
            exit(1);
        }
    }

    unsigned int i;

    // validate input
    if (BT <= 0.0f || BT >= 1.0f) {
        fprintf(stderr,"error: %s, bandwidth-time product must be in (0,1)\n", argv[0]);
        exit(1);
    }

    // derived values
    unsigned int num_symbols = num_data_symbols + 2*m;
    unsigned int num_samples = k*num_symbols;
    unsigned int h_len = 2*k*m+1;
    float nstd = powf(10.0f, -SNRdB/20.0f);

    // arrays
    unsigned char sym_in[num_symbols];      // input symbols
    float phi[num_samples];                 // transmitted phase
    float complex x[num_samples];           // transmitted signal
    float complex y[num_samples];           // received signal
    float phi_hat[num_samples];             // received phase
    float phi_prime[num_samples];           // matched-filter output
    unsigned char sym_out[num_symbols];     // output symbols

    // create transmit/receive interpolator/decimator
#if 0
    float ht[h_len];    // transmit filter coefficients
    liquid_firdes_gmsktx(k,m,BT,0.0f,ht);
    firfilt_rrrf ft = firfilt_rrrf_create(ht,h_len);
#else
    firinterp_rrrf interp_tx = firinterp_rrrf_create_prototype(LIQUID_FIRFILT_GMSKTX,k,m,BT,0);
#endif
    float hr[h_len];    // receive filter coefficients
    liquid_firdes_gmskrx(k,m,BT,0.0f,hr);
    firfilt_rrrf decim_rx = firfilt_rrrf_create(hr,h_len);

    // generate symbols and interpolate
    float theta = 0.0f;
    float k_inv = 1.0f / (float)k;
    for (i=0; i<num_symbols; i++) {
        sym_in[i] = rand() % 2;
        firinterp_rrrf_execute(interp_tx, sym_in[i] ? k_inv : -k_inv, &phi[k*i]);
        //firinterp_rrrf_execute(interp_tx, i==0 ? 1.0f : 0.0f, &phi[k*i]);

        // accumulate phase
        unsigned int j;
        for (j=0; j<k; j++) {
            theta += phi[i*k + j];
            x[i*k+j] = cexpf(_Complex_I*theta);
        }
    }

    // push through channel
    for (i=0; i<num_samples; i++)
        y[i] = x[i] + nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
    
    // run receiver
    float complex x_prime = 0.0f;
    unsigned int n=0;
    for (i=0; i<num_samples; i++) {
        phi_hat[i] = cargf( conjf(x_prime)*y[i] );
        x_prime = y[i];

        // push through filter
        firfilt_rrrf_push(decim_rx, phi_hat[i]);
        firfilt_rrrf_execute(decim_rx, &phi_prime[i]);

        // decimate output
        if ( (i%k)==0 ) {
            sym_out[n] = phi_prime[i] > 0.0f ? 1 : 0;
            printf("%3u : %12.8f (%1u)", n, phi_prime[i], sym_out[n]);
            if (n >= 2*m) printf(" (%1u)\n", sym_in[n-2*m]);
            else          printf("\n");
            n++;
        }
    }

    // compute number of errors
    unsigned int num_errors = 0;
    for (i=0; i<num_data_symbols; i++)
        num_errors += sym_in[i] == sym_out[i+2*m] ? 0 : 1;

    printf("errors : %3u / %3u\n", num_errors, num_data_symbols);

    // destroy objects
    firinterp_rrrf_destroy(interp_tx);
    firfilt_rrrf_destroy(decim_rx);

    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"k = %u;\n", k);
    fprintf(fid,"m = %u;\n", m);
    fprintf(fid,"BT = %f;\n", BT);
    fprintf(fid,"num_symbols = %u;\n", num_symbols);
    fprintf(fid,"num_samples = %u;\n", num_samples);

    // save filters
    for (i=0; i<h_len; i++)
        fprintf(fid,"hr(%3u) = %12.8f;\n", i+1, hr[i]);

    fprintf(fid,"x = zeros(1,num_samples);\n");
    fprintf(fid,"y = zeros(1,num_samples);\n");
    for (i=0; i<num_samples; i++) {
        fprintf(fid,"x(%4u)       = %12.8f + j*%12.8f;\n", i+1, crealf(x[i]), cimagf(x[i]));
        fprintf(fid,"y(%4u)       = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));
        fprintf(fid,"phi(%4u) = %12.8f;\n", i+1, phi[i]);
        fprintf(fid,"phi_hat(%4u) = %12.8f;\n", i+1, phi_hat[i]);
        fprintf(fid,"phi_prime(%4u) = %12.8f;\n", i+1, phi_prime[i]);
    }
    fprintf(fid,"t=[0:(num_samples-1)]/k;\n");
    fprintf(fid,"i = 1:k:num_samples;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"plot(t,phi_prime,'-', t(i),phi_prime(i),'or');\n");
    fprintf(fid,"xlabel('time');\n");
    fprintf(fid,"ylabel('matched filter output');\n");
    fprintf(fid,"grid on;\n");

    fclose(fid);
    printf("results written to '%s'\n", OUTPUT_FILENAME);

    return 0;
}