1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
//
// ampmodem_test.c
//
// Tests simple modulation/demodulation of the ampmodem (analog
// amplitude modulator/demodulator) with noise, carrier phase,
// and carrier frequency offsets.
//
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <getopt.h>
#include <complex.h>
#include "liquid.h"
#define OUTPUT_FILENAME "ampmodem_example.m"
// print usage/help message
void usage()
{
printf("ampmodem_example [options]\n");
printf(" -h : print usage\n");
printf(" -m <index> : modulation index, default: 0.8\n");
printf(" -f <freq> : freq. offset [rad/sample], default: 0.05\n");
printf(" -p <phase> : phase offset, default: 2.8\n");
printf(" -n <num> : number of samples, default: 2400\n");
printf(" -S <snr> : SNR [dB], default: 30\n");
printf(" -t <type> : AM type (dsb/usb/lsb), default: usb\n");
printf(" -s : suppress the carrier, default: off (carrier enabled)\n");
}
int main(int argc, char*argv[])
{
// options
float mod_index = 0.8f; // modulation index (bandwidth)
float dphi = 0.05f; // carrier frequency offset [radians/sample]
float phi = 2.8f; // carrier phase offset [radians]
float SNRdB = 30.0f; // signal-to-noise ratio (set very high for testing)
unsigned int num_samples = 2400; // number of samples
liquid_ampmodem_type type = LIQUID_AMPMODEM_USB;
int suppressed_carrier = 0;
int dopt;
while ((dopt = getopt(argc,argv,"hm:f:p:n:S:t:s")) != EOF) {
switch (dopt) {
case 'h': usage(); return 0;
case 'm': mod_index = atof(optarg); break;
case 'f': dphi = atof(optarg); break;
case 'p': phi = atof(optarg); break;
case 'n': num_samples = atoi(optarg); break;
case 'S': SNRdB = atof(optarg); break;
case 't':
if (strcmp(optarg,"dsb")==0) {
type = LIQUID_AMPMODEM_DSB;
} else if (strcmp(optarg,"usb")==0) {
type = LIQUID_AMPMODEM_USB;
} else if (strcmp(optarg,"lsb")==0) {
type = LIQUID_AMPMODEM_LSB;
} else {
fprintf(stderr,"error: %s, invalid AM type: %s\n", argv[0], optarg);
return 1;
}
break;
case 's': suppressed_carrier = 1; break;
default: return 1;
}
}
// create mod/demod objects
ampmodem mod = ampmodem_create(mod_index, type, suppressed_carrier);
ampmodem demod = ampmodem_create(mod_index, type, suppressed_carrier);
unsigned int delay = ampmodem_get_delay_mod(mod) + ampmodem_get_delay_demod(demod);
ampmodem_print(mod);
unsigned int i;
float x[num_samples];
float complex y[num_samples];
float z[num_samples];
// generate 'audio' signal (simple windowed sum of tones)
unsigned int nw = (unsigned int)(0.90*num_samples); // window length
unsigned int nt = (unsigned int)(0.05*num_samples); // taper length
for (i=0; i<num_samples; i++) {
x[i] = 0.6f*cos(2*M_PI*0.0202*i);
x[i] += 0.4f*cos(2*M_PI*0.0271*i);
x[i] *= i < nw ? liquid_rcostaper_window(i,nw,nt) : 0;
}
// modulate signal
for (i=0; i<num_samples; i++)
ampmodem_modulate(mod, x[i], &y[i]);
// add channel impairments
float nstd = powf(10.0f,-SNRdB/20.0f);
for (i=0; i<num_samples; i++) {
y[i] *= cexpf(_Complex_I*phi);
y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
// update phase
phi += dphi;
while (phi > M_PI) phi -= 2*M_PI;
while (phi < -M_PI) phi += 2*M_PI;
}
// demodulate signal
for (i=0; i<num_samples; i++)
ampmodem_demodulate(demod, y[i], &z[i]);
// destroy objects
ampmodem_destroy(mod);
ampmodem_destroy(demod);
// compute demodulation error
float rmse = 0.0f;
for (i=delay; i<num_samples; i++)
rmse += (x[i-delay] - z[i]) * (x[i-delay] - z[i]);
rmse = 10*log10( rmse / (float)(num_samples-delay) );
printf("rms error : %.3f dB\n", rmse);
// export results
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
fprintf(fid,"clear all\n");
fprintf(fid,"close all\n");
fprintf(fid,"n=%u;\n",num_samples);
fprintf(fid,"delay=%u;\n", delay);
for (i=0; i<num_samples; i++) {
fprintf(fid,"x(%3u) = %12.4e;\n", i+1, x[i]);
fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
fprintf(fid,"z(%3u) = %12.4e;\n", i+1, z[i]);
}
// plot results
fprintf(fid,"t=0:(n-1);\n");
fprintf(fid,"figure('position',[100 100 800 600]);\n");
// message signals
fprintf(fid,"subplot(3,1,1);\n");
fprintf(fid," plot(t,x,t-delay,z);\n");
fprintf(fid," axis([-delay n -1.2 1.2]);\n");
fprintf(fid," xlabel('Time [sample index]');\n");
fprintf(fid," ylabel('Message Signal');\n");
fprintf(fid," legend('original','demodulated');\n");
fprintf(fid," grid on;\n");
// rf signal
fprintf(fid,"subplot(3,1,2);\n");
fprintf(fid," plot(t,real(y),t,imag(y));\n");
fprintf(fid," axis([-delay n -1.8 1.8]);\n");
fprintf(fid," xlabel('Time [sample index]');\n");
fprintf(fid," ylabel('RF Signal');\n");
fprintf(fid," legend('real','imag');\n");
fprintf(fid," grid on;\n");
// spectrum
fprintf(fid,"subplot(3,1,3);\n");
fprintf(fid," nfft=2^nextpow2(n);\n");
fprintf(fid," f=[0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid," Y = 20*log10(abs(fftshift(fft(y,nfft))));\n");
fprintf(fid," Y = Y - max(Y);\n");
fprintf(fid," plot(f,Y);\n");
fprintf(fid," axis([-0.1 0.1 -60 10]);\n");
fprintf(fid," xlabel('Normalized Frequency [f/F_s]');\n");
fprintf(fid," ylabel('Received PSD [dB]');\n");
fprintf(fid," grid on;\n");
fclose(fid);
printf("results written to %s\n", OUTPUT_FILENAME);
return 0;
}
|