File: ampmodem_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (167 lines) | stat: -rw-r--r-- 6,231 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// 
// ampmodem_test.c
//
// Tests simple modulation/demodulation of the ampmodem (analog
// amplitude modulator/demodulator) with noise, carrier phase,
// and carrier frequency offsets.
//

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <getopt.h>
#include <complex.h>

#include "liquid.h"

#define OUTPUT_FILENAME "ampmodem_example.m"

// print usage/help message
void usage()
{
    printf("ampmodem_example [options]\n");
    printf("  -h         : print usage\n");
    printf("  -m <index> : modulation index,          default: 0.8\n");
    printf("  -f <freq>  : freq. offset [rad/sample], default: 0.05\n");
    printf("  -p <phase> : phase offset,              default: 2.8\n");
    printf("  -n <num>   : number of samples,         default: 2400\n");
    printf("  -S <snr>   : SNR [dB],                  default: 30\n");
    printf("  -t <type>  : AM type (dsb/usb/lsb),     default: usb\n");
    printf("  -s         : suppress the carrier,      default: off (carrier enabled)\n");
}

int main(int argc, char*argv[])
{
    // options
    float        mod_index          = 0.8f;     // modulation index (bandwidth)
    float        dphi               = 0.05f;    // carrier frequency offset [radians/sample]
    float        phi                = 2.8f;     // carrier phase offset [radians]
    float        SNRdB              = 30.0f;    // signal-to-noise ratio (set very high for testing)
    unsigned int num_samples        = 2400;     // number of samples
    liquid_ampmodem_type type       = LIQUID_AMPMODEM_USB;
    int          suppressed_carrier = 0;

    int dopt;
    while ((dopt = getopt(argc,argv,"hm:f:p:n:S:t:s")) != EOF) {
        switch (dopt) {
        case 'h': usage();                    return 0;
        case 'm': mod_index   = atof(optarg); break;
        case 'f': dphi        = atof(optarg); break;
        case 'p': phi         = atof(optarg); break;
        case 'n': num_samples = atoi(optarg); break;
        case 'S': SNRdB       = atof(optarg); break;
        case 't':
            if (strcmp(optarg,"dsb")==0) {
                type = LIQUID_AMPMODEM_DSB;
            } else if (strcmp(optarg,"usb")==0) {
                type = LIQUID_AMPMODEM_USB;
            } else if (strcmp(optarg,"lsb")==0) {
                type = LIQUID_AMPMODEM_LSB;
            } else {
                fprintf(stderr,"error: %s, invalid AM type: %s\n", argv[0], optarg);
                return 1;
            }
            break;
        case 's': suppressed_carrier = 1;     break;
        default:                              return 1;
        }
    }

    // create mod/demod objects
    ampmodem mod   = ampmodem_create(mod_index, type, suppressed_carrier);
    ampmodem demod = ampmodem_create(mod_index, type, suppressed_carrier);
    unsigned int delay = ampmodem_get_delay_mod(mod) + ampmodem_get_delay_demod(demod);
    ampmodem_print(mod);

    unsigned int i;
    float         x[num_samples];
    float complex y[num_samples];
    float         z[num_samples];

    // generate 'audio' signal (simple windowed sum of tones)
    unsigned int nw = (unsigned int)(0.90*num_samples); // window length
    unsigned int nt = (unsigned int)(0.05*num_samples); // taper length
    for (i=0; i<num_samples; i++) {
        x[i] =  0.6f*cos(2*M_PI*0.0202*i);
        x[i] += 0.4f*cos(2*M_PI*0.0271*i);
        x[i] *= i < nw ? liquid_rcostaper_window(i,nw,nt) : 0;
    }

    // modulate signal
    for (i=0; i<num_samples; i++)
        ampmodem_modulate(mod, x[i], &y[i]);

    // add channel impairments
    float nstd = powf(10.0f,-SNRdB/20.0f);
    for (i=0; i<num_samples; i++) {
        y[i] *= cexpf(_Complex_I*phi);
        y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;

        // update phase
        phi += dphi;
        while (phi >  M_PI) phi -= 2*M_PI;
        while (phi < -M_PI) phi += 2*M_PI;
    }

    // demodulate signal
    for (i=0; i<num_samples; i++)
        ampmodem_demodulate(demod, y[i], &z[i]);

    // destroy objects
    ampmodem_destroy(mod);
    ampmodem_destroy(demod);

    // compute demodulation error
    float rmse = 0.0f;
    for (i=delay; i<num_samples; i++)
        rmse += (x[i-delay] - z[i]) * (x[i-delay] - z[i]);
    rmse = 10*log10( rmse / (float)(num_samples-delay) );
    printf("rms error : %.3f dB\n", rmse);

    // export results
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"n=%u;\n",num_samples);
    fprintf(fid,"delay=%u;\n", delay);
    for (i=0; i<num_samples; i++) {
        fprintf(fid,"x(%3u) = %12.4e;\n", i+1, x[i]);
        fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
        fprintf(fid,"z(%3u) = %12.4e;\n", i+1, z[i]);
    }
    // plot results
    fprintf(fid,"t=0:(n-1);\n");
    fprintf(fid,"figure('position',[100 100 800 600]);\n");
    // message signals
    fprintf(fid,"subplot(3,1,1);\n");
    fprintf(fid,"  plot(t,x,t-delay,z);\n");
    fprintf(fid,"  axis([-delay n -1.2 1.2]);\n");
    fprintf(fid,"  xlabel('Time [sample index]');\n");
    fprintf(fid,"  ylabel('Message Signal');\n");
    fprintf(fid,"  legend('original','demodulated');\n");
    fprintf(fid,"  grid on;\n");
    // rf signal
    fprintf(fid,"subplot(3,1,2);\n");
    fprintf(fid,"  plot(t,real(y),t,imag(y));\n");
    fprintf(fid,"  axis([-delay n -1.8 1.8]);\n");
    fprintf(fid,"  xlabel('Time [sample index]');\n");
    fprintf(fid,"  ylabel('RF Signal');\n");
    fprintf(fid,"  legend('real','imag');\n");
    fprintf(fid,"  grid on;\n");
    // spectrum
    fprintf(fid,"subplot(3,1,3);\n");
    fprintf(fid,"  nfft=2^nextpow2(n);\n");
    fprintf(fid,"  f=[0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"  Y = 20*log10(abs(fftshift(fft(y,nfft))));\n");
    fprintf(fid,"  Y = Y - max(Y);\n");
    fprintf(fid,"  plot(f,Y);\n");
    fprintf(fid,"  axis([-0.1 0.1 -60 10]);\n");
    fprintf(fid,"  xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"  ylabel('Received PSD [dB]');\n");
    fprintf(fid,"  grid on;\n");
    fclose(fid);
    printf("results written to %s\n", OUTPUT_FILENAME);
    return 0;
}