File: conversion_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (139 lines) | stat: -rw-r--r-- 5,063 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
//
// conversion_example.c
//
// This example demonstrates conversion from complex baseband to a real-valued
// signal, and then down-conversion back to complex baseband while removing the
// negative image.
//
//  STEP 1: A signal is generated at complex baseband consisting of narrow-band
//          filtered noise and an offset tone (to show asymmetry in the transmit
//          spectrum).
//
//  STEP 2: The signal is mixed up to a carrier 'fc' (relative to the sampling
//          frequency) and the real-component of the result is retained. This is
//          the DAC output. The spectrum of this signal has two images: one at
//          +fc, the other at -fc.
//
//  STEP 3: The DAC output is mixed back down to complex baseband and the lower
//          image is (mostly) filtered off. Reminants of the lower frequency
//          component are still visible due to the wide-band and low-order
//          filter on the receiver. The received complex baseband signal also
//          has a reduction in power by 2 because half the signal's energy (the
//          negative image) is filtered off.
//

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "liquid.h"

#define OUTPUT_FILENAME "conversion_example.m"

int main()
{
    // spectral periodogram options
    unsigned int nfft        =   1200;  // spectral periodogram FFT size
    unsigned int num_samples =  64000;  // number of samples
    float        fc          =   0.20f; // carrier (relative to sampling rate)

    // create objects
    iirfilt_crcf   filter_tx    = iirfilt_crcf_create_lowpass(15, 0.05);
    nco_crcf       mixer_tx     = nco_crcf_create(LIQUID_VCO);
    nco_crcf       mixer_rx     = nco_crcf_create(LIQUID_VCO);
    iirfilt_crcf   filter_rx    = iirfilt_crcf_create_lowpass(7, 0.2);

    // set carrier frequencies
    nco_crcf_set_frequency(mixer_tx, fc * 2*M_PI);
    nco_crcf_set_frequency(mixer_rx, fc * 2*M_PI);

    // create objects for measuring power spectral density
    spgramcf spgram_tx  = spgramcf_create_default(nfft);
    spgramf  spgram_dac = spgramf_create_default(nfft);
    spgramcf spgram_rx  = spgramcf_create_default(nfft);

    // run through loop one step at a time
    unsigned int i;
    for (i=0; i<num_samples; i++) {
        // STEP 1: generate input signal (filtered noise with offset tone)
        float complex v1 = (randnf() + randnf()*_Complex_I) + 3.0f*cexpf(-_Complex_I*0.2f*i);
        iirfilt_crcf_execute(filter_tx, v1, &v1);

        // save spectrum
        spgramcf_push(spgram_tx, v1);

        // STEP 2: mix signal up and save real part (DAC output)
        nco_crcf_mix_up(mixer_tx, v1, &v1);
        float v2 = crealf(v1);
        nco_crcf_step(mixer_tx);

        // save spectrum
        spgramf_push(spgram_dac, v2);

        // STEP 3: mix signal down and filter off image
        float complex v3;
        nco_crcf_mix_down(mixer_rx, v2, &v3);
        iirfilt_crcf_execute(filter_rx, v3, &v3);
        nco_crcf_step(mixer_rx);

        // save spectrum
        spgramcf_push(spgram_rx, v3);
    }

    // compute power spectral density output
    float   psd_tx  [nfft];
    float   psd_dac [nfft];
    float   psd_rx  [nfft];
    spgramcf_get_psd(spgram_tx,  psd_tx);
    spgramf_get_psd( spgram_dac, psd_dac);
    spgramcf_get_psd(spgram_rx,  psd_rx);

    // destroy objects
    spgramcf_destroy(spgram_tx);
    spgramf_destroy(spgram_dac);
    spgramcf_destroy(spgram_rx);

    iirfilt_crcf_destroy(filter_tx);
    nco_crcf_destroy(mixer_tx);
    nco_crcf_destroy(mixer_rx);
    iirfilt_crcf_destroy(filter_rx);

    // 
    // export output file
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n\n");

    fprintf(fid,"nfft   = %u;\n", nfft);
    fprintf(fid,"f      = [0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"psd_tx = zeros(1,nfft);\n");
    fprintf(fid,"psd_dac= zeros(1,nfft);\n");
    fprintf(fid,"psd_rx = zeros(1,nfft);\n");
    
    for (i=0; i<nfft; i++) {
        fprintf(fid,"psd_tx (%6u) = %12.4e;\n", i+1, psd_tx [i]);
        fprintf(fid,"psd_dac(%6u) = %12.4e;\n", i+1, psd_dac[i]);
        fprintf(fid,"psd_rx (%6u) = %12.4e;\n", i+1, psd_rx [i]);
    }

    fprintf(fid,"figure;\n");
    fprintf(fid,"hold on;\n");
    fprintf(fid,"  plot(f, psd_tx,  '-', 'LineWidth',1.5,'Color',[0.7 0.7 0.7]);\n");
    fprintf(fid,"  plot(f, psd_dac, '-', 'LineWidth',1.5,'Color',[0.0 0.5 0.3]);\n");
    fprintf(fid,"  plot(f, psd_rx,  '-', 'LineWidth',1.5,'Color',[0.0 0.3 0.5]);\n");
    fprintf(fid,"hold off;\n");
    fprintf(fid,"xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"ylabel('Power Spectral Density [dB]');\n");
    fprintf(fid,"grid on;\n");
    fprintf(fid,"axis([-0.5 0.5 -100 60]);\n");
    fprintf(fid,"legend('transmit (complex)','DAC output (real)','receive (complex)','location','northeast');\n");

    fclose(fid);
    printf("results written to %s.\n", OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}