File: cpfskmodem_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (205 lines) | stat: -rw-r--r-- 7,854 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// 
// cpfskmodem_example.c
//
// This example demonstrates the continuous phase frequency-shift keying
// (CP-FSK) modem in liquid. A message signal is modulated and the
// resulting signal is recovered using a demodulator object.
//

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include <math.h>
#include "liquid.h"

#define OUTPUT_FILENAME "cpfskmodem_example.m"

// print usage/help message
void usage()
{
    printf("cpfskmodem_example -- continuous-phase frequency-shift keying example\n");
    printf("options:\n");
    printf(" -h             : print help\n");
    printf(" -t <type>      : filter type: [square], rcos-full, rcos-half, gmsk\n");
    printf(" -p <b/s>       : bits/symbol,              default:  1\n");
    printf(" -H <index>     : modulation index,         default:  0.5\n");
    printf(" -k <s/sym>     : samples/symbol,           default:  8\n");
    printf(" -m <delay>     : filter delay (symbols),   default:  3\n");
    printf(" -b <rolloff>   : filter roll-off,          default:  0.35\n");
    printf(" -n <num>       : number of data symbols,   default: 80\n");
    printf(" -s <snr>       : SNR [dB],                 default: 40\n");
}

int main(int argc, char*argv[])
{
    // options
    unsigned int    bps         = 1;        // number of bits/symbol
    float           h           = 0.5f;     // modulation index (h=1/2 for MSK)
    unsigned int    k           = 4;        // filter samples/symbol
    unsigned int    m           = 3;        // filter delay (symbols)
    float           beta        = 0.35f;    // GMSK bandwidth-time factor
    unsigned int    num_symbols = 20;       // number of data symbols
    float           SNRdB       = 40.0f;    // signal-to-noise ratio [dB]
    int             filter_type = LIQUID_CPFSK_SQUARE;

    int dopt;
    while ((dopt = getopt(argc,argv,"ht:p:H:k:m:b:n:s:")) != EOF) {
        switch (dopt) {
        case 'h': usage();                      return 0;
        case 't':
            if (strcmp(optarg,"square")==0) {
                filter_type = LIQUID_CPFSK_SQUARE;
            } else if (strcmp(optarg,"rcos-full")==0) {
                filter_type = LIQUID_CPFSK_RCOS_FULL;
            } else if (strcmp(optarg,"rcos-half")==0) {
                filter_type = LIQUID_CPFSK_RCOS_PARTIAL;
            } else if (strcmp(optarg,"gmsk")==0) {
                filter_type = LIQUID_CPFSK_GMSK;
            } else {
                fprintf(stderr,"error: %s, unknown filter type '%s'\n", argv[0], optarg);
                exit(1);
            }
            break;
        case 'p': bps   = atoi(optarg);         break;
        case 'H': h     = atof(optarg);         break;
        case 'k': k     = atoi(optarg);         break;
        case 'm': m     = atoi(optarg);         break;
        case 'b': beta  = atof(optarg);         break;
        case 'n': num_symbols = atoi(optarg);   break;
        case 's': SNRdB = atof(optarg);         break;
        default:
            exit(1);
        }
    }

    unsigned int i;

    // derived values
    unsigned int  num_samples = k*num_symbols;
    unsigned int  M           = 1 << bps;
    float         nstd        = powf(10.0f, -SNRdB/20.0f);

    // arrays
    unsigned int  sym_in [num_symbols]; // input symbols
    float complex x      [num_samples]; // transmitted signal
    float complex y      [num_samples]; // received signal
    unsigned int  sym_out[num_symbols]; // output symbols

    // create modem objects
    cpfskmod mod = cpfskmod_create(bps, h, k, m, beta, filter_type);
    cpfskdem dem = cpfskdem_create(bps, h, k, m, beta, filter_type);

    // print modulator
    cpfskmod_print(mod);
    cpfskdem_print(dem);
    
    // get full symbol delay
    unsigned int delay = cpfskmod_get_delay(mod) + cpfskdem_get_delay(dem);
    printf("delay: %u samples\n", delay);

    // generate message signal
    for (i=0; i<num_symbols; i++)
        sym_in[i] = rand() % M;

    // modulate signal
    for (i=0; i<num_symbols; i++)
        cpfskmod_modulate(mod, sym_in[i], &x[k*i]);

    // push through channel (add noise)
    for (i=0; i<num_samples; i++)
        y[i] = x[i] + nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;

    // demodulate signal
    for (i=0; i<num_symbols; i++)
        sym_out[i] = cpfskdem_demodulate(dem, &y[i*k]);

    // print/count errors
    unsigned int num_errors = 0;
    for (i=delay; i<num_symbols; i++) {
        int is_err = (sym_in[i-delay] == sym_out[i]) ? 0 : 1;
        printf("  %3u : %2u %2u %s\n", i, sym_in[i-delay], sym_out[i], is_err ? "*" : "");
        num_errors += is_err;
    }
    printf("symbol errors: %u / %u\n", num_errors, num_symbols-delay);

    // destroy modem objects
    cpfskmod_destroy(mod);
    cpfskdem_destroy(dem);

    // compute power spectral density of transmitted signal
    unsigned int nfft = 1024;
    float psd[nfft];
    spgramcf_estimate_psd(nfft, x, num_samples, psd);

    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"k = %u;\n", k);
    fprintf(fid,"h = %f;\n", h);
    fprintf(fid,"num_symbols = %u;\n", num_symbols);
    fprintf(fid,"num_samples = %u;\n", num_samples);
    fprintf(fid,"nfft        = %u;\n", nfft);
    fprintf(fid,"delay       = %u; %% receive filter delay\n", m);

    fprintf(fid,"x   = zeros(1,num_samples);\n");
    fprintf(fid,"y   = zeros(1,num_samples);\n");
    for (i=0; i<num_samples; i++) {
        fprintf(fid,"x(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(x[i]), cimagf(x[i]));
        fprintf(fid,"y(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));
    }
    // save power spectral density
    fprintf(fid,"psd = zeros(1,nfft);\n");
    for (i=0; i<nfft; i++)
        fprintf(fid,"psd(%4u) = %12.8f;\n", i+1, psd[i]);

    fprintf(fid,"t=[0:(num_samples-1)]/k;\n");
    fprintf(fid,"i = 1:k:num_samples;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(3,4,1:3);\n");
    fprintf(fid,"  plot(t,real(x),'-', t(i),real(x(i)),'ob',...\n");
    fprintf(fid,"       t,imag(x),'-', t(i),imag(x(i)),'og');\n");
    fprintf(fid,"  axis([0 num_symbols -1.2 1.2]);\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('x(t)');\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,4,5:7);\n");
    fprintf(fid,"  plot(t,real(y),'-', t(i),real(y(i)),'ob',...\n");
    fprintf(fid,"       t,imag(y),'-', t(i),imag(y(i)),'og');\n");
    fprintf(fid,"  axis([0 num_symbols -1.2 1.2]);\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('y(t)');\n");
    fprintf(fid,"  grid on;\n");
    // plot I/Q constellations
    fprintf(fid,"subplot(3,4,4);\n");
    fprintf(fid,"  plot(real(x),imag(x),'-',real(x(i)),imag(x(i)),'rs','MarkerSize',4);\n");
    fprintf(fid,"  xlabel('I');\n");
    fprintf(fid,"  ylabel('Q');\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.2);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,4,8);\n");
    fprintf(fid,"  plot(real(y),imag(y),'-',real(y(i)),imag(y(i)),'rs','MarkerSize',4);\n");
    fprintf(fid,"  xlabel('I');\n");
    fprintf(fid,"  ylabel('Q');\n");
    fprintf(fid,"  axis([-1 1 -1 1]*1.2);\n");
    fprintf(fid,"  axis square;\n");
    fprintf(fid,"  grid on;\n");
    // plot PSD
    fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"subplot(3,4,9:12);\n");
    fprintf(fid,"  plot(f,psd,'LineWidth',1.5);\n");
    fprintf(fid,"  axis([-0.5 0.5 -60 20]);\n");
    fprintf(fid,"  xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"  ylabel('PSD [dB]');\n");
    fprintf(fid,"  grid on;\n");

    fclose(fid);
    printf("results written to '%s'\n", OUTPUT_FILENAME);

    return 0;
}