File: detector_cccf_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (194 lines) | stat: -rw-r--r-- 6,787 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// 
// detector_example.c
//
// This example demonstrates the binary pre-demodulator synchronizer. A random
// binary sequence is generated, modulated with BPSK, and then interpolated.
// The resulting sequence is used to generate a detector object which in turn
// is used to detect a signal in the presence of carrier frequency and timing
// offsets and additive white Gauss noise.
//

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>
#include <time.h>
#include "liquid.h"

#define OUTPUT_FILENAME "detector_example.m"

// print usage/help message
void usage()
{
    printf("detector_example -- test binary pre-demodulation synchronization\n");
    printf("options:\n");
    printf("  h     : print usage/help\n");
    printf("  n     : number of sync samples, default: 128\n");
    printf("  F     : carrier frequency offset, default: 0.02\n");
    printf("  T     : fractional sample offset dt in [-0.5, 0.5], default: 0\n");
    printf("  S     : SNR [dB], default: 20\n");
    printf("  t     : detection threshold, default: 0.3\n");
}

int main(int argc, char*argv[])
{
    //srand(time(NULL));

    // options
    unsigned int n    =  128;       // number of sync samples
    float dt          =  0.0f;      // fractional sample timing offset
    float noise_floor = -30.0f;     // noise floor [dB]
    float SNRdB       =  20.0f;     // signal-to-noise ratio [dB]
    float dphi        =  0.0f;      // carrier frequency offset
    float phi         =  0.0f;      // carrier phase offset
    float threshold   =  0.3f;      // detection threshold

    int dopt;
    while ((dopt = getopt(argc,argv,"hn:T:F:S:t:")) != EOF) {
        switch (dopt) {
        case 'h': usage();              return 0;
        case 'n': n         = atoi(optarg); break;
        case 'F': dphi      = atof(optarg); break;
        case 'T': dt        = atof(optarg); break;
        case 'S': SNRdB     = atof(optarg); break;
        case 't': threshold = atof(optarg); break;
        default:
            exit(1);
        }
    }

    unsigned int i;

    // validate input
    if (dt < -0.5f || dt > 0.5f) {
        fprintf(stderr,"error: %s, fractional sample offset must be in [-0.5,0.5]\n", argv[0]);
        exit(1);
    }

    // derived values
    unsigned int num_samples = 3*n;
    float nstd = powf(10.0f, noise_floor/20.0f);
    float gamma = powf(10.0f, (SNRdB + noise_floor)/20.0f);

    // arrays
    float complex s[n];             // synchronization pattern (samples)
    float complex x[num_samples];   // transmitted signal
    float complex y[num_samples];   // received signal

    // generate synchronization pattern (OFDM symbol, slightly over-sampled)
    float complex S[n];
    for (i=0; i<n; i++)
        S[i] = (i < 0.4*n || i > 0.6*n) ? randnf() + _Complex_I*randnf() : 0.0f;
    fft_run(n, S, s, LIQUID_FFT_BACKWARD, 0);
    float s2 = 0.0f;
    for (i=0; i<n; i++)
        s2 += crealf(s[i]*conjf(s[i]));
    for (i=0; i<n; i++)
        s[i] /= sqrtf(s2 / (float)n);

    // generate transmitted signal: 0 0 0 ... 0 s[0] s[1] ... s[n-1] 0 0 0 ... 0
    for (i=0; i<n; i++) {
        x[0*n+i] = 0.0f;
        x[1*n+i] = s[i];
        x[2*n+i] = 0.0f;
    }

    // generate received signal (add channel impairments)
    unsigned int d = 11;    // fractional sample filter delay
    firfilt_crcf finterp = firfilt_crcf_create_kaiser(2*d+1, 0.45f, 40.0f, dt);
    for (i=0; i<num_samples+d; i++) {
        // fractional sample timing offset
        if (i < num_samples) firfilt_crcf_push(finterp, x[i]);
        else                 firfilt_crcf_push(finterp, 0.0f);

        if (i < d) firfilt_crcf_execute(finterp, &y[0]);
        else       firfilt_crcf_execute(finterp, &y[i-d]);
    }
    firfilt_crcf_destroy(finterp);

    for (i=0; i<num_samples; i++) {
        // channel gain
        y[i] *= gamma;

        // carrier offset
        y[i] *= cexpf(_Complex_I*(dphi*i + phi));
        
        // noise
        y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
    }

    // create cross-correlator
    detector_cccf sync = detector_cccf_create(s, n, threshold, 0.03f);
    detector_cccf_print(sync);

    // push signal through detector
    float tau_hat   = 0.0f;
    float dphi_hat  = 0.0f;
    float gamma_hat = 1.0f;
    int signal_detected = 0;
    unsigned int index = 0;
    for (i=0; i<num_samples; i++) {
        
        // correlate
        int detected = detector_cccf_correlate(sync, y[i], &tau_hat, &dphi_hat, &gamma_hat);

        if (detected) {
            signal_detected = 1;
            printf("****** preamble found, tau_hat=%8.6f, dphi_hat=%8.6f, gamma_hat=%8.6f\n",
                    tau_hat, dphi_hat, gamma_hat);
            index = i;
        }
    }

    // destroy objects
    detector_cccf_destroy(sync);
    
    // print results
    printf("\n");
    printf("signal detected :   %s\n", signal_detected ? "yes" : "no");
    float delay_est = (float) index + tau_hat;
    float delay     = (float)(2*n) + dt; // actual delay (samples)
    printf("delay estimate  : %8.3f, actual=%8.3f (error=%8.3f) sample(s)\n", delay_est, delay, delay-delay_est);
    printf("dphi estimate   : %8.5f, actual=%8.5f (error=%8.5f) rad/sample\n",dphi_hat,  dphi,  dphi-dphi_hat);
    printf("gamma estimate  : %8.3f, actual=%8.3f (error=%8.3f) dB\n",        20*log10f(gamma_hat), 20*log10f(gamma), 20*log10(gamma/gamma_hat));
    printf("\n");

    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all\n");
    fprintf(fid,"close all\n");
    fprintf(fid,"n           = %u;\n", n);
    fprintf(fid,"num_samples = %u;\n", num_samples);

    fprintf(fid,"s = zeros(1,n);\n");
    for (i=0; i<n; i++)
        fprintf(fid,"s(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(s[i]), cimagf(s[i]));

    fprintf(fid,"x = zeros(1,num_samples);\n");
    fprintf(fid,"y = zeros(1,num_samples);\n");
    for (i=0; i<num_samples; i++) {
        fprintf(fid,"x(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(x[i]), cimagf(x[i]));
        fprintf(fid,"y(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));
    }

    fprintf(fid,"t=[0:(num_samples-1)];\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(2,1,1);\n");
    fprintf(fid,"  plot(t,real(x), t,imag(x));\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('transmitted signal');\n");
    fprintf(fid,"subplot(2,1,2);\n");
    fprintf(fid,"  plot(t,real(y), t,imag(y));\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('received signal');\n");

    fclose(fid);
    printf("results written to '%s'\n", OUTPUT_FILENAME);

    return 0;
}