1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
//
// eqlms_cccf_decisiondirected_example.c
//
// Tests least mean-squares (LMS) equalizer (EQ) on a signal with a known
// linear modulation scheme, but unknown data. The equalizer is updated
// using decision-directed demodulator output samples.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <complex.h>
#include <getopt.h>
#include <time.h>
#include "liquid.h"
#define OUTPUT_FILENAME "eqlms_cccf_decisiondirected_example.m"
// print usage/help message
void usage()
{
printf("Usage: eqlms_cccf_decisiondirected_example [OPTION]\n");
printf(" h : print help\n");
printf(" n : number of symbols, default: 500\n");
printf(" s : SNR [dB], default: 30\n");
printf(" c : number of channel filter taps (minimum: 1), default: 5\n");
printf(" k : samples/symbol, default: 2\n");
printf(" m : filter semi-length (symbols), default: 4\n");
printf(" b : filter excess bandwidth factor, default: 0.3\n");
printf(" p : equalizer semi-length (symbols), default: 3\n");
printf(" u : equalizer learning rate, default; 0.05\n");
printf(" M : modulation scheme (qpsk default)\n");
liquid_print_modulation_schemes();
}
int main(int argc, char*argv[])
{
srand(time(NULL));
// options
unsigned int num_symbols=500; // number of symbols to observe
float SNRdB = 30.0f; // signal-to-noise ratio [dB]
unsigned int hc_len=5; // channel filter length
unsigned int k=2; // matched filter samples/symbol
unsigned int m=3; // matched filter delay (symbols)
float beta=0.3f; // matched filter excess bandwidth factor
unsigned int p=3; // equalizer length (symbols, hp_len = 2*k*p+1)
float mu = 0.08f; // learning rate
// modulation type/depth
modulation_scheme ms = LIQUID_MODEM_QPSK;
int dopt;
while ((dopt = getopt(argc,argv,"hn:s:c:k:m:b:p:u:M:")) != EOF) {
switch (dopt) {
case 'h': usage(); return 0;
case 'n': num_symbols = atoi(optarg); break;
case 's': SNRdB = atof(optarg); break;
case 'c': hc_len = atoi(optarg); break;
case 'k': k = atoi(optarg); break;
case 'm': m = atoi(optarg); break;
case 'b': beta = atof(optarg); break;
case 'p': p = atoi(optarg); break;
case 'u': mu = atof(optarg); break;
case 'M':
ms = liquid_getopt_str2mod(optarg);
if (ms == LIQUID_MODEM_UNKNOWN) {
fprintf(stderr,"error: %s, unknown/unsupported modulation scheme '%s'\n", argv[0], optarg);
return 1;
}
break;
default:
exit(1);
}
}
// validate input
if (num_symbols == 0) {
fprintf(stderr,"error: %s, number of symbols must be greater than zero\n", argv[0]);
exit(1);
} else if (hc_len == 0) {
fprintf(stderr,"error: %s, channel must have at least 1 tap\n", argv[0]);
exit(1);
} else if (k < 2) {
fprintf(stderr,"error: %s, samples/symbol must be at least 2\n", argv[0]);
exit(1);
} else if (m == 0) {
fprintf(stderr,"error: %s, filter semi-length must be at least 1 symbol\n", argv[0]);
exit(1);
} else if (beta < 0.0f || beta > 1.0f) {
fprintf(stderr,"error: %s, filter excess bandwidth must be in [0,1]\n", argv[0]);
exit(1);
} else if (p == 0) {
fprintf(stderr,"error: %s, equalizer semi-length must be at least 1 symbol\n", argv[0]);
exit(1);
} else if (mu < 0.0f || mu > 1.0f) {
fprintf(stderr,"error: %s, equalizer learning rate must be in [0,1]\n", argv[0]);
exit(1);
}
// derived values
unsigned int hm_len = 2*k*m+1; // matched filter length
unsigned int hp_len = 2*k*p+1; // equalizer filter length
unsigned int num_samples = k*num_symbols;
// bookkeeping variables
float complex sym_tx[num_symbols]; // transmitted data sequence
float complex x[num_samples]; // interpolated time series
float complex y[num_samples]; // channel output
float complex z[num_samples]; // equalized output
float hm[hm_len]; // matched filter response
float complex hc[hc_len]; // channel filter coefficients
float complex hp[hp_len]; // equalizer filter coefficients
unsigned int i;
// generate matched filter response
liquid_firdes_prototype(LIQUID_FIRFILT_RRC, k, m, beta, 0.0f, hm);
firinterp_crcf interp = firinterp_crcf_create(k, hm, hm_len);
// create the modem objects
modemcf mod = modemcf_create(ms);
modemcf demod = modemcf_create(ms);
unsigned int M = 1 << modemcf_get_bps(mod);
// generate channel impulse response, filter
hc[0] = 1.0f;
for (i=1; i<hc_len; i++)
hc[i] = 0.09f*(randnf() + randnf()*_Complex_I);
firfilt_cccf fchannel = firfilt_cccf_create(hc, hc_len);
// generate random symbols
for (i=0; i<num_symbols; i++)
modemcf_modulate(mod, rand()%M, &sym_tx[i]);
// interpolate
for (i=0; i<num_symbols; i++)
firinterp_crcf_execute(interp, sym_tx[i], &x[i*k]);
// push through channel
float nstd = powf(10.0f, -SNRdB/20.0f);
for (i=0; i<num_samples; i++) {
firfilt_cccf_push(fchannel, x[i]);
firfilt_cccf_execute(fchannel, &y[i]);
// add noise
y[i] += nstd*(randnf() + randnf()*_Complex_I)*M_SQRT1_2;
}
// push through equalizer
// create equalizer, initialized with square-root Nyquist filter
eqlms_cccf eq = eqlms_cccf_create_rnyquist(LIQUID_FIRFILT_RRC, k, p, beta, 0.0f);
eqlms_cccf_set_bw(eq, mu);
// get initialized weights
eqlms_cccf_copy_coefficients(eq, hp);
// filtered error vector magnitude (empirical RMS error)
float evm_hat = 0.03f;
float complex d_hat = 0.0f;
for (i=0; i<num_samples; i++) {
// print filtered evm (empirical rms error)
if ( ((i+1)%50)==0 )
printf("%4u : rms error = %12.8f dB\n", i+1, 10*log10(evm_hat));
eqlms_cccf_push(eq, y[i]);
eqlms_cccf_execute(eq, &d_hat);
// store output
z[i] = d_hat;
// decimate by k
if ( (i%k) != 0 ) continue;
// estimate transmitted signal
unsigned int sym_out; // output symbol
float complex d_prime; // estimated input sample
modemcf_demodulate(demod, d_hat, &sym_out);
modemcf_get_demodulator_sample(demod, &d_prime);
// update equalizer
eqlms_cccf_step(eq, d_prime, d_hat);
// update filtered evm estimate
float evm = crealf( (d_prime-d_hat)*conjf(d_prime-d_hat) );
evm_hat = 0.98f*evm_hat + 0.02f*evm;
}
// get equalizer weights
eqlms_cccf_copy_coefficients(eq, hp);
// destroy objects
eqlms_cccf_destroy(eq);
firinterp_crcf_destroy(interp);
firfilt_cccf_destroy(fchannel);
modemcf_destroy(mod);
modemcf_destroy(demod);
//
// export output
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n\n", OUTPUT_FILENAME);
fprintf(fid,"clear all\n");
fprintf(fid,"close all\n");
fprintf(fid,"k = %u;\n", k);
fprintf(fid,"m = %u;\n", m);
fprintf(fid,"num_symbols = %u;\n", num_symbols);
fprintf(fid,"num_samples = num_symbols*k;\n");
// save transmit matched-filter response
fprintf(fid,"hm_len = 2*k*m+1;\n");
fprintf(fid,"hm = zeros(1,hm_len);\n");
for (i=0; i<hm_len; i++)
fprintf(fid,"hm(%4u) = %12.4e;\n", i+1, hm[i]);
// save channel impulse response
fprintf(fid,"hc_len = %u;\n", hc_len);
fprintf(fid,"hc = zeros(1,hc_len);\n");
for (i=0; i<hc_len; i++)
fprintf(fid,"hc(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(hc[i]), cimagf(hc[i]));
// save equalizer response
fprintf(fid,"hp_len = %u;\n", hp_len);
fprintf(fid,"hp = zeros(1,hp_len);\n");
for (i=0; i<hp_len; i++)
fprintf(fid,"hp(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(hp[i]), cimagf(hp[i]));
// save sample sets
fprintf(fid,"x = zeros(1,num_samples);\n");
fprintf(fid,"y = zeros(1,num_samples);\n");
fprintf(fid,"z = zeros(1,num_samples);\n");
for (i=0; i<num_samples; i++) {
fprintf(fid,"x(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
fprintf(fid,"y(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
fprintf(fid,"z(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(z[i]), cimagf(z[i]));
}
// plot time response
fprintf(fid,"t = 0:(num_samples-1);\n");
fprintf(fid,"tsym = 1:k:num_samples;\n");
fprintf(fid,"figure;\n");
fprintf(fid,"plot(t,real(z),...\n");
fprintf(fid," t(tsym),real(z(tsym)),'x');\n");
// plot constellation
fprintf(fid,"tsym0 = tsym(1:(length(tsym)/2));\n");
fprintf(fid,"tsym1 = tsym((length(tsym)/2):end);\n");
fprintf(fid,"figure;\n");
fprintf(fid,"plot(real(z(tsym0)),imag(z(tsym0)),'x','Color',[1 1 1]*0.7,...\n");
fprintf(fid," real(z(tsym1)),imag(z(tsym1)),'x','Color',[1 1 1]*0.0);\n");
fprintf(fid,"xlabel('In-Phase');\n");
fprintf(fid,"ylabel('Quadrature');\n");
fprintf(fid,"axis([-1 1 -1 1]*1.5);\n");
fprintf(fid,"axis square;\n");
fprintf(fid,"grid on;\n");
// compute composite response
fprintf(fid,"g = real(conv(conv(hm,hc),hp));\n");
// plot responses
fprintf(fid,"nfft = 1024;\n");
fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid,"Hm = 20*log10(abs(fftshift(fft(hm/k,nfft))));\n");
fprintf(fid,"Hc = 20*log10(abs(fftshift(fft(hc, nfft))));\n");
fprintf(fid,"Hp = 20*log10(abs(fftshift(fft(hp, nfft))));\n");
fprintf(fid,"G = 20*log10(abs(fftshift(fft(g/k, nfft))));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"plot(f,Hm, f,Hc, f,Hp, f,G,'-k','LineWidth',2, [-0.5/k 0.5/k],[-6.026 -6.026],'or');\n");
fprintf(fid,"xlabel('Normalized Frequency');\n");
fprintf(fid,"ylabel('Power Spectral Density');\n");
fprintf(fid,"legend('transmit','channel','equalizer','composite','half-power points',1);\n");
fprintf(fid,"axis([-0.5 0.5 -12 8]);\n");
fprintf(fid,"grid on;\n");
fclose(fid);
printf("results written to '%s'\n", OUTPUT_FILENAME);
return 0;
}
|