1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
//
// firfilt_crcf_example.c
//
// Complex finite impulse response filter example. Demonstrates the
// functionality of firfilt by designing a low-order prototype and using it
// to filter a noisy signal. The filter coefficients are real, but the
// input and output arrays are complex. The filter order and cutoff
// frequency are specified at the beginning.
//
#include <stdio.h>
#include <math.h>
#include <complex.h>
#include "liquid.h"
#define OUTPUT_FILENAME "firfilt_crcf_example.m"
int main() {
// options
unsigned int h_len=65; // filter length
float fc=0.1f; // cutoff frequency
float As=60.0f; // stop-band attenuation
unsigned int n=240; // number of samples
// design filter from prototype and scale to bandwidth
firfilt_crcf q = firfilt_crcf_create_kaiser(h_len, fc, As, 0.0f);
firfilt_crcf_set_scale(q, 2.0f*fc);
firfilt_crcf_print(q);
unsigned int i;
// allocate memory for data arrays
float complex x[n];
float complex y[n];
// generate input signal (sine wave with decaying amplitude)
unsigned int wlen = (unsigned int)roundf(0.75*n);
for (i=0; i<n; i++) {
// generate input signal
x[i] = 0.7f*cexpf(2*M_PI*0.057f*_Complex_I*i) +
0.3f*cexpf(2*M_PI*0.357f*_Complex_I*i);
// apply window
x[i] *= i < wlen ? liquid_hamming(i,wlen) : 0;
// run filter
firfilt_crcf_push(q, x[i]);
firfilt_crcf_execute(q, &y[i]);
}
// compute response
unsigned int nfft = 1024;
float complex H[nfft];
for (i=0; i<nfft; i++) {
float freq = ((float)i - 0.5f*(float)nfft) / (float)nfft;
firfilt_crcf_freqresponse(q, freq, &H[i]);
}
// destroy filter object
firfilt_crcf_destroy(q);
//
// plot results to output file
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"\n");
fprintf(fid,"h_len=%u;\n", h_len);
fprintf(fid,"n=%u;\n",n);
fprintf(fid,"nfft=%u;\n",nfft);
fprintf(fid,"x=zeros(1,n);\n");
fprintf(fid,"y=zeros(1,n);\n");
fprintf(fid,"H=zeros(1,nfft);\n");
for (i=0; i<n; i++) {
//printf("%4u : %12.8f + j*%12.8f\n", i, crealf(y), cimagf(y));
fprintf(fid,"x(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
fprintf(fid,"y(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
}
for (i=0; i<nfft; i++)
fprintf(fid,"H(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(H[i]), cimagf(H[i]));
// plot output
fprintf(fid,"tx=0:(n-1);\n");
fprintf(fid,"ty=tx - (h_len-1)/2;\n");
fprintf(fid,"figure;\n");
fprintf(fid,"subplot(2,1,1);\n");
fprintf(fid," plot(tx,real(x),'-','Color',[1 1 1]*0.5,'LineWidth',1,...\n");
fprintf(fid," ty,real(y),'-','Color',[0 0.5 0.25],'LineWidth',2);\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('real');\n");
fprintf(fid," legend('input','filtered output','location','northeast');\n");
fprintf(fid," grid on;\n");
fprintf(fid,"subplot(2,1,2);\n");
fprintf(fid," plot(tx,imag(x),'-','Color',[1 1 1]*0.5,'LineWidth',1,...\n");
fprintf(fid," ty,imag(y),'-','Color',[0 0.25 0.5],'LineWidth',2);\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('imag');\n");
fprintf(fid," legend('input','filtered output','location','northeast');\n");
fprintf(fid," grid on;\n");
// plot frequency response
fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid,"g = 1/sum(abs(x));\n");
fprintf(fid,"X = 20*log10(abs(fftshift(fft(x*g,nfft))));\n");
fprintf(fid,"Y = 20*log10(abs(fftshift(fft(y*g,nfft))));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"plot(f,X,'Color',[1 1 1]*0.5,'LineWidth',1,...\n");
fprintf(fid," f,Y,'Color',[0 0.5 0.25],'LineWidth',2,...\n");
fprintf(fid," f,20*log10(abs(H)),'Color',[0 0.25 0.5],'LineWidth',1);\n");
fprintf(fid,"axis([-0.5 0.5 -120 20]);\n");
fprintf(fid,"grid on;\n");
fprintf(fid,"xlabel('Normalized Frequency [f/F_s]');\n");
fprintf(fid,"ylabel('Power Spectral Density [dB]');\n");
fprintf(fid,"legend('input','output','filter','location','northeast');\n");
fclose(fid);
printf("results written to %s.\n", OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|