1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
//
// firpfbch_crcf_analysis_example.c
//
// Example of the analysis channelizer filterbank. The input signal is
// comprised of several signals spanning different frequency bands. The
// channelizer downconverts each to baseband (maximally decimated), and
// the resulting spectrum of each is plotted.
//
#include <stdio.h>
#include <math.h>
#include <complex.h>
#include "liquid.h"
#define OUTPUT_FILENAME "firpfbch_crcf_analysis_example.m"
int main() {
// options
unsigned int num_channels = 8; // number of channels
unsigned int m = 4; // filter delay
float As = 60; // stop-band attenuation
unsigned int num_frames = 25; // number of frames
//
unsigned int i;
unsigned int k;
// derived values
unsigned int num_samples = num_frames * num_channels;
// data arrays
float complex x[num_samples]; // time-domain input [size: num_samples x 1 ]
float complex y[num_samples]; // channelized output [size: num_channels x num_frames]
// initialize input with zeros
for (i=0; i<num_samples; i++)
x[i] = 0.0f;
// generate input signal(s)
unsigned int num_signals = 4;
float fc[4] = {0.0f, 0.25f, 0.375f, -0.375f}; // center frequencies
float bw[4] = {0.035f, 0.035f, 0.035f, 0.035f}; // bandwidths
unsigned int pulse_len = 137;
float pulse[pulse_len];
for (i=0; i<num_signals; i++) {
// create pulse
liquid_firdes_kaiser(pulse_len, bw[i], 50.0f, 0.0f, pulse);
// add pulse to input signal with carrier offset
for (k=0; k<pulse_len; k++)
x[k] += pulse[k] * cexpf(_Complex_I*2*M_PI*fc[i]*k) * bw[i];
}
// create prototype filter
unsigned int h_len = 2*num_channels*m + 1;
float h[h_len];
liquid_firdes_kaiser(h_len, 0.5f/(float)num_channels, As, 0.0f, h);
#if 0
// create filterbank channelizer object using internal method for filter
firpfbch_crcf q = firpfbch_crcf_create_kaiser(LIQUID_ANALYZER, num_channels, m, As);
#else
// create filterbank channelizer object using external filter coefficients
firpfbch_crcf q = firpfbch_crcf_create(LIQUID_ANALYZER, num_channels, 2*m, h);
#endif
// channelize input data
for (i=0; i<num_frames; i++) {
// execute analysis filter bank
firpfbch_crcf_analyzer_execute(q, &x[i*num_channels], &y[i*num_channels]);
}
// destroy channelizer object
firpfbch_crcf_destroy(q);
//
// export results to file
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s: auto-generated file\n\n", OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"num_channels = %u;\n", num_channels);
fprintf(fid,"m = %u;\n", m);
fprintf(fid,"num_frames = %u;\n", num_frames);
fprintf(fid,"h_len = 2*num_channels*m+1;\n");
fprintf(fid,"num_samples = num_frames*num_channels;\n");
fprintf(fid,"h = zeros(1,h_len);\n");
fprintf(fid,"x = zeros(1,num_samples);\n");
fprintf(fid,"y = zeros(num_channels, num_frames);\n");
// save prototype filter
for (i=0; i<h_len; i++)
fprintf(fid," h(%6u) = %12.4e;\n", i+1, h[i]);
// save input signal
for (i=0; i<num_samples; i++)
fprintf(fid," x(%6u) = %12.4e + 1i*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
// save channelized output signals
for (i=0; i<num_frames; i++) {
for (k=0; k<num_channels; k++) {
float complex v = y[i*num_channels + k];
fprintf(fid," y(%3u,%6u) = %12.4e + 1i*%12.4e;\n", k+1, i+1, crealf(v), cimagf(v));
}
}
// plot results
fprintf(fid,"\n");
fprintf(fid,"nfft = 1024;\n"); // TODO: use nextpow2
fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid,"H = 20*log10(abs(fftshift(fft(h/num_channels,nfft))));\n");
fprintf(fid,"X = 20*log10(abs(fftshift(fft(x,nfft))));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"subplot(2,1,1);\n");
fprintf(fid," plot(f, H, 'Color', [0 0.5 0.25], 'LineWidth', 2);\n");
fprintf(fid," axis([-0.5 0.5 -100 10]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('Normalized Frequency [f/F_s]');\n");
fprintf(fid," ylabel('Prototype Filter PSD');\n");
fprintf(fid,"subplot(2,1,2);\n");
fprintf(fid," plot(f, X, 'Color', [0 0.25 0.5], 'LineWidth', 2);\n");
fprintf(fid," axis([-0.5 0.5 -100 0]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('Normalized Frequency [f/F_s]');\n");
fprintf(fid," ylabel('Input PSD');\n");
// compute the PSD of each output and plot results on a square grid
fprintf(fid,"n = ceil(sqrt(num_channels));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"for i=1:num_channels,\n");
fprintf(fid," Y = 20*log10(abs(fftshift(fft(y(i,:),nfft))));\n");
fprintf(fid," subplot(n,n,i);\n");
fprintf(fid," plot(f, Y, 'Color', [0.25 0 0.25], 'LineWidth', 1.5);\n");
fprintf(fid," axis([-0.5 0.5 -120 20]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," title(num2str(i-1));\n");
fprintf(fid,"end;\n");
fclose(fid);
printf("results written to %s\n", OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|