1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
//
// iirdes_example.c
//
// Tests infinite impulse response (IIR) digital filter design.
// SEE ALSO: iirdes_analog_example.c
// iir_filter_crcf_example.c
//
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <math.h>
#include "liquid.h"
#define OUTPUT_FILENAME "iirdes_example.m"
// print usage/help message
void usage()
{
printf("iirdes_example -- infinite impulse response filter design\n");
printf("options (default values in []):\n");
printf(" u/h : print usage/help\n");
printf(" t : filter type: [butter], cheby1, cheby2, ellip, bessel\n");
printf(" b : filter transformation: [LP], HP, BP, BS\n");
printf(" n : filter order, n > 0 [5]\n");
printf(" r : passband ripple in dB (cheby1, ellip), r > 0 [1.0]\n");
printf(" s : stopband attenuation in dB (cheby2, ellip), s > 0 [60.0]\n");
printf(" f : passband cut-off, 0 < f < 0.5 [0.2]\n");
printf(" c : center frequency (BP, BS cases), 0 < c < 0.5 [0.25]\n");
printf(" o : format [sos], tf\n");
printf(" sos : second-order sections form\n");
printf(" tf : regular transfer function form (potentially\n");
printf(" unstable for large orders\n");
}
int main(int argc, char*argv[]) {
// options
unsigned int order=5; // filter order
float fc = 0.20f; // cutoff frequency (low-pass prototype)
float f0 = 0.25f; // center frequency (band-pass, band-stop)
float As = 60.0f; // stopband attenuation [dB]
float Ap = 1.0f; // passband ripple [dB]
// filter type
liquid_iirdes_filtertype ftype = LIQUID_IIRDES_BUTTER;
// band type
liquid_iirdes_bandtype btype = LIQUID_IIRDES_LOWPASS;
// output format: second-order sections or transfer function
liquid_iirdes_format format = LIQUID_IIRDES_SOS;
int dopt;
while ((dopt = getopt(argc,argv,"uht:b:n:r:s:f:c:o:")) != EOF) {
switch (dopt) {
case 'u':
case 'h':
usage();
return 0;
case 't':
if (strcmp(optarg,"butter")==0) {
ftype = LIQUID_IIRDES_BUTTER;
} else if (strcmp(optarg,"cheby1")==0) {
ftype = LIQUID_IIRDES_CHEBY1;
} else if (strcmp(optarg,"cheby2")==0) {
ftype = LIQUID_IIRDES_CHEBY2;
} else if (strcmp(optarg,"ellip")==0) {
ftype = LIQUID_IIRDES_ELLIP;
} else if (strcmp(optarg,"bessel")==0) {
ftype = LIQUID_IIRDES_BESSEL;
} else {
fprintf(stderr,"error: iirdes_example, unknown filter type \"%s\"\n", optarg);
usage();
exit(1);
}
break;
case 'b':
if (strcmp(optarg,"LP")==0) {
btype = LIQUID_IIRDES_LOWPASS;
} else if (strcmp(optarg,"HP")==0) {
btype = LIQUID_IIRDES_HIGHPASS;
} else if (strcmp(optarg,"BP")==0) {
btype = LIQUID_IIRDES_BANDPASS;
} else if (strcmp(optarg,"BS")==0) {
btype = LIQUID_IIRDES_BANDSTOP;
} else {
fprintf(stderr,"error: iirdes_example, unknown band type \"%s\"\n", optarg);
usage();
exit(1);
}
break;
case 'n': order = atoi(optarg); break;
case 'r': Ap = atof(optarg); break;
case 's': As = atof(optarg); break;
case 'f': fc = atof(optarg); break;
case 'c': f0 = atof(optarg); break;
case 'o':
if (strcmp(optarg,"sos")==0) {
format = LIQUID_IIRDES_SOS;
} else if (strcmp(optarg,"tf")==0) {
format = LIQUID_IIRDES_TF;
} else {
fprintf(stderr,"error: iirdes_example, unknown output format \"%s\"\n", optarg);
usage();
exit(1);
}
break;
default:
exit(1);
}
}
// validate input
if (fc <= 0 || fc >= 0.5) {
fprintf(stderr,"error: %s, cutoff frequency out of range\n", argv[0]);
usage();
exit(1);
} else if (f0 < 0 || f0 > 0.5) {
fprintf(stderr,"error: %s, center frequency out of range\n", argv[0]);
usage();
exit(1);
} else if (Ap <= 0) {
fprintf(stderr,"error: %s, pass-band ripple out of range\n", argv[0]);
usage();
exit(1);
} else if (As <= 0) {
fprintf(stderr,"error: %s, stop-band ripple out of range\n", argv[0]);
usage();
exit(1);
}
// derived values : compute filter length
unsigned int N = order; // effective order
// filter order effectively doubles for band-pass, band-stop
// filters due to doubling the number of poles and zeros as
// a result of filter transformation
if (btype == LIQUID_IIRDES_BANDPASS ||
btype == LIQUID_IIRDES_BANDSTOP)
{
N *= 2;
}
unsigned int r = N % 2; // odd/even order
unsigned int L = (N-r)/2; // filter semi-length
// allocate memory for filter coefficients
unsigned int h_len = (format == LIQUID_IIRDES_SOS) ? 3*(L+r) : N+1;
float b[h_len];
float a[h_len];
// design filter
liquid_iirdes(ftype, btype, format, order, fc, f0, Ap, As, b, a);
// open output file
FILE*fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"n=%u;\n", order);
fprintf(fid,"r=%u;\n", r);
fprintf(fid,"L=%u;\n", L);
fprintf(fid,"nfft=1024;\n");
unsigned int i;
if (format == LIQUID_IIRDES_TF) {
// print coefficients
for (i=0; i<=N; i++) printf("a[%3u] = %12.8f;\n", i, a[i]);
for (i=0; i<=N; i++) printf("b[%3u] = %12.8f;\n", i, b[i]);
fprintf(fid,"a = zeros(1,n+1);\n");
fprintf(fid,"b = zeros(1,n+1);\n");
for (i=0; i<=N; i++) {
fprintf(fid,"a(%3u) = %12.4e;\n", i+1, a[i]);
fprintf(fid,"b(%3u) = %12.4e;\n", i+1, b[i]);
}
fprintf(fid,"\n");
fprintf(fid,"H = fft(b,nfft)./fft(a,nfft);\n");
fprintf(fid,"H = fftshift(H);\n");
fprintf(fid,"%% group delay\n");
fprintf(fid,"c = conv(b,fliplr(conj(a)));\n");
fprintf(fid,"cr = c.*[0:(length(c)-1)];\n");
fprintf(fid,"t0 = fftshift(fft(cr,nfft));\n");
fprintf(fid,"t1 = fftshift(fft(c, nfft));\n");
fprintf(fid,"polebins = find(abs(t1)<1e-6);\n");
fprintf(fid,"t0(polebins)=0;\n");
fprintf(fid,"t1(polebins)=1;\n");
fprintf(fid,"gd = real(t0./t1) - length(a) + 1;\n");
} else {
float * B = b;
float * A = a;
// print coefficients
printf("B [%u x 3] :\n", L+r);
for (i=0; i<L+r; i++)
printf(" %12.8f %12.8f %12.8f\n", B[3*i+0], B[3*i+1], B[3*i+2]);
printf("A [%u x 3] :\n", L+r);
for (i=0; i<L+r; i++)
printf(" %12.8f %12.8f %12.8f\n", A[3*i+0], A[3*i+1], A[3*i+2]);
unsigned int j;
for (i=0; i<L+r; i++) {
for (j=0; j<3; j++) {
fprintf(fid,"B(%3u,%3u) = %16.8e;\n", i+1, j+1, B[3*i+j]);
fprintf(fid,"A(%3u,%3u) = %16.8e;\n", i+1, j+1, A[3*i+j]);
}
}
fprintf(fid,"\n");
fprintf(fid,"H = ones(1,nfft);\n");
fprintf(fid,"gd = zeros(1,nfft);\n");
fprintf(fid,"t0 = zeros(1,nfft);\n");
fprintf(fid,"t1 = zeros(1,nfft);\n");
fprintf(fid,"for i=1:(L+r),\n");
fprintf(fid," H = H .* fft(B(i,:),nfft)./fft(A(i,:),nfft);\n");
fprintf(fid," %% group delay\n");
fprintf(fid," c = conv(B(i,:),fliplr(conj(A(i,:))));\n");
fprintf(fid," cr = c.*[0:4];\n");
fprintf(fid," t0 = fftshift(fft(cr,nfft));\n");
fprintf(fid," t1 = fftshift(fft(c, nfft));\n");
fprintf(fid," polebins = find(abs(t1)<1e-6);\n");
fprintf(fid," t0(polebins)=0;\n");
fprintf(fid," t1(polebins)=1;\n");
fprintf(fid," gd = gd + real(t0./t1) - 2;\n");
fprintf(fid,"end;\n");
fprintf(fid,"H = fftshift(H);\n");
}
fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid,"figure;\n");
// plot magnitude response (detail)
fprintf(fid,"subplot(3,1,1),\n");
fprintf(fid," plot(f,20*log10(abs(H)),'-','Color',[0.5 0 0],'LineWidth',2);\n");
fprintf(fid," axis([0.0 0.5 -4 1]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('Normalized Frequency');\n");
fprintf(fid," ylabel('Filter PSD [dB]');\n");
// plot magnitude response (full range)
fprintf(fid,"subplot(3,1,2),\n");
fprintf(fid," plot(f,20*log10(abs(H)),'-','Color',[0.5 0 0],'LineWidth',2);\n");
fprintf(fid," axis([0.0 0.5 -100 10]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('Normalized Frequency');\n");
fprintf(fid," ylabel('Filter PSD [dB]');\n");
// plot group delay
fprintf(fid,"subplot(3,1,3);\n");
fprintf(fid," plot(f,gd,'-','Color',[0 0.5 0],'LineWidth',2);\n");
fprintf(fid," axis([0.0 0.5 0 ceil(1.1*max(gd))]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('Normalized Frequency');\n");
fprintf(fid," ylabel('Group delay [samples]');\n");
fclose(fid);
printf("results written to %s.\n", OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|