File: iirdes_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (262 lines) | stat: -rw-r--r-- 9,599 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// 
// iirdes_example.c
//
// Tests infinite impulse response (IIR) digital filter design.
// SEE ALSO: iirdes_analog_example.c
//           iir_filter_crcf_example.c
//

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <getopt.h>
#include <math.h>
#include "liquid.h"

#define OUTPUT_FILENAME "iirdes_example.m"

// print usage/help message
void usage()
{
    printf("iirdes_example -- infinite impulse response filter design\n");
    printf("options (default values in []):\n");
    printf("  u/h   : print usage/help\n");
    printf("  t     : filter type: [butter], cheby1, cheby2, ellip, bessel\n");
    printf("  b     : filter transformation: [LP], HP, BP, BS\n");
    printf("  n     : filter order, n > 0 [5]\n");
    printf("  r     : passband ripple in dB (cheby1, ellip), r > 0 [1.0]\n");
    printf("  s     : stopband attenuation in dB (cheby2, ellip), s > 0 [60.0]\n");
    printf("  f     : passband cut-off, 0 < f < 0.5 [0.2]\n");
    printf("  c     : center frequency (BP, BS cases), 0 < c < 0.5 [0.25]\n");
    printf("  o     : format [sos], tf\n");
    printf("          sos   : second-order sections form\n");
    printf("          tf    : regular transfer function form (potentially\n");
    printf("                  unstable for large orders\n");
}


int main(int argc, char*argv[]) {
    // options
    unsigned int order=5;   // filter order
    float fc = 0.20f;       // cutoff frequency (low-pass prototype)
    float f0 = 0.25f;       // center frequency (band-pass, band-stop)
    float As = 60.0f;       // stopband attenuation [dB]
    float Ap = 1.0f;        // passband ripple [dB]

    // filter type
    liquid_iirdes_filtertype ftype = LIQUID_IIRDES_BUTTER;

    // band type
    liquid_iirdes_bandtype btype = LIQUID_IIRDES_LOWPASS;

    // output format: second-order sections or transfer function
    liquid_iirdes_format format = LIQUID_IIRDES_SOS;

    int dopt;
    while ((dopt = getopt(argc,argv,"uht:b:n:r:s:f:c:o:")) != EOF) {
        switch (dopt) {
        case 'u':
        case 'h':
            usage();
            return 0;
        case 't':
            if (strcmp(optarg,"butter")==0) {
                ftype = LIQUID_IIRDES_BUTTER;
            } else if (strcmp(optarg,"cheby1")==0) {
                ftype = LIQUID_IIRDES_CHEBY1;
            } else if (strcmp(optarg,"cheby2")==0) {
                ftype = LIQUID_IIRDES_CHEBY2;
            } else if (strcmp(optarg,"ellip")==0) {
                ftype = LIQUID_IIRDES_ELLIP;
            } else if (strcmp(optarg,"bessel")==0) {
                ftype = LIQUID_IIRDES_BESSEL;
            } else {
                fprintf(stderr,"error: iirdes_example, unknown filter type \"%s\"\n", optarg);
                usage();
                exit(1);
            }
            break;
        case 'b':
            if (strcmp(optarg,"LP")==0) {
                btype = LIQUID_IIRDES_LOWPASS;
            } else if (strcmp(optarg,"HP")==0) {
                btype = LIQUID_IIRDES_HIGHPASS;
            } else if (strcmp(optarg,"BP")==0) {
                btype = LIQUID_IIRDES_BANDPASS;
            } else if (strcmp(optarg,"BS")==0) {
                btype = LIQUID_IIRDES_BANDSTOP;
            } else {
                fprintf(stderr,"error: iirdes_example, unknown band type \"%s\"\n", optarg);
                usage();
                exit(1);
            }
            break;
        case 'n': order = atoi(optarg); break;
        case 'r': Ap = atof(optarg);    break;
        case 's': As = atof(optarg);    break;
        case 'f': fc = atof(optarg);    break;
        case 'c': f0 = atof(optarg);    break;
        case 'o':
            if (strcmp(optarg,"sos")==0) {
                format = LIQUID_IIRDES_SOS;
            } else if (strcmp(optarg,"tf")==0) {
                format = LIQUID_IIRDES_TF;
            } else {
                fprintf(stderr,"error: iirdes_example, unknown output format \"%s\"\n", optarg);
                usage();
                exit(1);
            }
            break;
        default:
            exit(1);
        }
    }

    // validate input
    if (fc <= 0 || fc >= 0.5) {
        fprintf(stderr,"error: %s, cutoff frequency out of range\n", argv[0]);
        usage();
        exit(1);
    } else if (f0 < 0 || f0 > 0.5) {
        fprintf(stderr,"error: %s, center frequency out of range\n", argv[0]);
        usage();
        exit(1);
    } else if (Ap <= 0) {
        fprintf(stderr,"error: %s, pass-band ripple out of range\n", argv[0]);
        usage();
        exit(1);
    } else if (As <= 0) {
        fprintf(stderr,"error: %s, stop-band ripple out of range\n", argv[0]);
        usage();
        exit(1);
    }

    // derived values : compute filter length
    unsigned int N = order; // effective order
    // filter order effectively doubles for band-pass, band-stop
    // filters due to doubling the number of poles and zeros as
    // a result of filter transformation
    if (btype == LIQUID_IIRDES_BANDPASS ||
        btype == LIQUID_IIRDES_BANDSTOP)
    {
        N *= 2;
    }
    unsigned int r = N % 2;     // odd/even order
    unsigned int L = (N-r)/2;   // filter semi-length

    // allocate memory for filter coefficients
    unsigned int h_len = (format == LIQUID_IIRDES_SOS) ? 3*(L+r) : N+1;
    float b[h_len];
    float a[h_len];

    // design filter
    liquid_iirdes(ftype, btype, format, order, fc, f0, Ap, As, b, a);

    // open output file
    FILE*fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n");

    fprintf(fid,"n=%u;\n", order);
    fprintf(fid,"r=%u;\n", r);
    fprintf(fid,"L=%u;\n", L);
    fprintf(fid,"nfft=1024;\n");

    unsigned int i;
    if (format == LIQUID_IIRDES_TF) {
        // print coefficients
        for (i=0; i<=N; i++) printf("a[%3u] = %12.8f;\n", i, a[i]);
        for (i=0; i<=N; i++) printf("b[%3u] = %12.8f;\n", i, b[i]);

        fprintf(fid,"a = zeros(1,n+1);\n");
        fprintf(fid,"b = zeros(1,n+1);\n");
        for (i=0; i<=N; i++) {
            fprintf(fid,"a(%3u) = %12.4e;\n", i+1, a[i]);
            fprintf(fid,"b(%3u) = %12.4e;\n", i+1, b[i]);
        }
        fprintf(fid,"\n");
        fprintf(fid,"H = fft(b,nfft)./fft(a,nfft);\n");
        fprintf(fid,"H = fftshift(H);\n");
        fprintf(fid,"%% group delay\n");
        fprintf(fid,"c = conv(b,fliplr(conj(a)));\n");
        fprintf(fid,"cr = c.*[0:(length(c)-1)];\n");
        fprintf(fid,"t0 = fftshift(fft(cr,nfft));\n");
        fprintf(fid,"t1 = fftshift(fft(c, nfft));\n");
        fprintf(fid,"polebins = find(abs(t1)<1e-6);\n");
        fprintf(fid,"t0(polebins)=0;\n");
        fprintf(fid,"t1(polebins)=1;\n");
        fprintf(fid,"gd = real(t0./t1) - length(a) + 1;\n");

    } else {
        float * B = b;
        float * A = a;
        // print coefficients
        printf("B [%u x 3] :\n", L+r);
        for (i=0; i<L+r; i++)
            printf("  %12.8f %12.8f %12.8f\n", B[3*i+0], B[3*i+1], B[3*i+2]);
        printf("A [%u x 3] :\n", L+r);
        for (i=0; i<L+r; i++)
            printf("  %12.8f %12.8f %12.8f\n", A[3*i+0], A[3*i+1], A[3*i+2]);

        unsigned int j;
        for (i=0; i<L+r; i++) {
            for (j=0; j<3; j++) {
                fprintf(fid,"B(%3u,%3u) = %16.8e;\n", i+1, j+1, B[3*i+j]);
                fprintf(fid,"A(%3u,%3u) = %16.8e;\n", i+1, j+1, A[3*i+j]);
            }
        }
        fprintf(fid,"\n");
        fprintf(fid,"H = ones(1,nfft);\n");
        fprintf(fid,"gd = zeros(1,nfft);\n");
        fprintf(fid,"t0 = zeros(1,nfft);\n");
        fprintf(fid,"t1 = zeros(1,nfft);\n");
        fprintf(fid,"for i=1:(L+r),\n");
        fprintf(fid,"    H = H .* fft(B(i,:),nfft)./fft(A(i,:),nfft);\n");
        fprintf(fid,"    %% group delay\n");
        fprintf(fid,"    c = conv(B(i,:),fliplr(conj(A(i,:))));\n");
        fprintf(fid,"    cr = c.*[0:4];\n");
        fprintf(fid,"    t0 = fftshift(fft(cr,nfft));\n");
        fprintf(fid,"    t1 = fftshift(fft(c, nfft));\n");
        fprintf(fid,"    polebins = find(abs(t1)<1e-6);\n");
        fprintf(fid,"    t0(polebins)=0;\n");
        fprintf(fid,"    t1(polebins)=1;\n");
        fprintf(fid,"    gd = gd + real(t0./t1) - 2;\n");
        fprintf(fid,"end;\n");
        fprintf(fid,"H = fftshift(H);\n");
    }

    fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"figure;\n");

    // plot magnitude response (detail)
    fprintf(fid,"subplot(3,1,1),\n");
    fprintf(fid,"  plot(f,20*log10(abs(H)),'-','Color',[0.5 0 0],'LineWidth',2);\n");
    fprintf(fid,"  axis([0.0 0.5 -4 1]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('Normalized Frequency');\n");
    fprintf(fid,"  ylabel('Filter PSD [dB]');\n");

    // plot magnitude response (full range)
    fprintf(fid,"subplot(3,1,2),\n");
    fprintf(fid,"  plot(f,20*log10(abs(H)),'-','Color',[0.5 0 0],'LineWidth',2);\n");
    fprintf(fid,"  axis([0.0 0.5 -100 10]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('Normalized Frequency');\n");
    fprintf(fid,"  ylabel('Filter PSD [dB]');\n");

    // plot group delay
    fprintf(fid,"subplot(3,1,3);\n");
    fprintf(fid,"  plot(f,gd,'-','Color',[0 0.5 0],'LineWidth',2);\n");
    fprintf(fid,"  axis([0.0 0.5 0 ceil(1.1*max(gd))]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('Normalized Frequency');\n");
    fprintf(fid,"  ylabel('Group delay [samples]');\n");

    fclose(fid);
    printf("results written to %s.\n", OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}