File: msresamp2_crcf_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (237 lines) | stat: -rw-r--r-- 8,935 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//
// msresamp2_crcf_example.c
//
// Demonstration of the multi-stage half-band resampler
//

#include <stdio.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include <getopt.h>

#include "liquid.h"

#define OUTPUT_FILENAME "msresamp2_crcf_example.m"

// print usage/help message
void usage()
{
    printf("Usage: %s [OPTION]\n", __FILE__);
    printf(" -h         : print help\n");
    printf(" -r <rate>  : resampling rate (output/input), default: 0.25\n");
    printf(" -s <atten> : stop-band attenuation [dB],     default: 60\n");
    printf(" -n <num>   : number of low-rate samples,     default: 256\n");
    printf(" -f <freq>  : pass-band cut-off frequency,    default: 0.45\n");
}

int main(int argc, char*argv[])
{
    // options
    float        r  = 0.25f;    // resampling rate (output/input)
    float        As = 60.0f;    // resampling filter stop-band attenuation [dB]
    unsigned int n  =   128;    // number of low-rate samples
    float        fc = 0.45f;    // filter pass-band cut-off frequency

    int dopt;
    while ((dopt = getopt(argc,argv,"hr:s:n:f:")) != EOF) {
        switch (dopt) {
        case 'h': usage();                return 0;
        case 'r': r       = atof(optarg); break;
        case 's': As      = atof(optarg); break;
        case 'n': n       = atoi(optarg); break;
        case 'f': fc      = atof(optarg); break;
        default:
            exit(1);
        }
    }

    // validate input
    if (n == 0) {
        fprintf(stderr,"error: %s, number of input samples must be greater than zero\n", argv[0]);
        exit(1);
    } else if (r <= 0.0f) {
        fprintf(stderr,"error: %s, resampling rate must be greater than zero\n", argv[0]);
        exit(1);
    } else if ( roundf(fabsf(log2f(r))) > 10 ) {
        fprintf(stderr,"error: %s, resampling rate unreasonable\n", argv[0]);
        exit(1);
    }

    // determine type and compute number of stages
    unsigned int num_stages = (unsigned int) roundf(fabsf(log2f(r)));
    int type = r < 1. ? LIQUID_RESAMP_DECIM : LIQUID_RESAMP_INTERP;

    printf("msresamp2:\n");
    printf("    rate    :   %12.8f\n", r);
    printf("    log2(r) :   %12.8f\n", log2f(r));
    printf("    type    :   %s\n", type == LIQUID_RESAMP_DECIM ? "decim" : "interp");
    printf("    stages  :   %u\n", num_stages);

    unsigned int i;

    // create multi-stage arbitrary resampler object
    msresamp2_crcf q = msresamp2_crcf_create(type, num_stages, fc, 0.0f, As);
    msresamp2_crcf_print(q);
    float delay = msresamp2_crcf_get_delay(q);
    r           = msresamp2_crcf_get_rate(q);

    // number of input samples (zero-padded)
    unsigned int M  = (1 << num_stages);    // integer resampling rate
    unsigned int nx = (type == LIQUID_RESAMP_DECIM) ? n * M : n;
    unsigned int ny = (type == LIQUID_RESAMP_DECIM) ? n     : n * M;
    unsigned int wlen = round(0.75 * nx);

    // allocate memory for arrays
    float complex x[nx];
    float complex y[ny];

    // generate input signal: tone just before the edge of filter band
    float ftone = 0.95 * fc * ((type == LIQUID_RESAMP_DECIM) ? r : 1);
    float wsum  = 0.0f;
    for (i=0; i<nx; i++) {
        // compute window
        float w = i < wlen ? liquid_kaiser(i, wlen, 10.0f) : 0.0f;

        // apply window to complex sinusoid
        x[i] = cexpf(_Complex_I*2*M_PI*ftone*i) * w;

        // accumulate window
        wsum += w;
    }

    // run resampler
    unsigned int dx = (type == LIQUID_RESAMP_INTERP) ? 1 : M; // input stride
    unsigned int dy = (type == LIQUID_RESAMP_INTERP) ? M : 1; // output stride
    for (i=0; i<n; i++)
        msresamp2_crcf_execute(q, &x[i*dx], &y[i*dy]);

    // clean up allocated objects
    msresamp2_crcf_destroy(q);
    
    // 
    // analyze resulting signal
    //

    // check that the actual resampling rate is close to the target
    float r_actual = (float)ny / (float)nx;
    float fy = ftone / r;      // expected output frequency

    // run FFT and ensure that carrier has moved and that image
    // frequencies and distortion have been adequately suppressed
    unsigned int nfft = 4 << liquid_nextpow2(n*M);
    float complex yfft[nfft];   // fft input
    float complex Yfft[nfft];   // fft output
    for (i=0; i<nfft; i++)
        yfft[i] = i < ny ? y[i] : 0.0f;
    fft_run(nfft, yfft, Yfft, LIQUID_FFT_FORWARD, 0);
    fft_shift(Yfft, nfft);  // run FFT shift

    // find peak frequency
    float Ypeak = 0.0f;
    float fpeak = 0.0f;
    float max_sidelobe = -1e9f;     // maximum side-lobe [dB]
    float main_lobe_width = 0.07f;  // TODO: figure this out from Kaiser's equations
    for (i=0; i<nfft; i++) {
        // normalized output frequency
        float f = (float)i/(float)nfft - 0.5f;

        // scale FFT output appropriately
        float Ymag = 20*log10f( cabsf(Yfft[i] / (r * wsum)) );

        // find frequency location of maximum magnitude
        if (Ymag > Ypeak || i==0) {
            Ypeak = Ymag;
            fpeak = f;
        }

        // find peak side-lobe value, ignoring frequencies
        // within a certain range of signal frequency
        if ( fabsf(f-fy) > main_lobe_width )
            max_sidelobe = Ymag > max_sidelobe ? Ymag : max_sidelobe;
    }

    // print results and check frequency location
    printf("output results:\n");
    printf("  output delay              :   %12.8f samples\n", delay);
    printf("  desired resampling rate   :   %12.8f\n", r);
    printf("  measured resampling rate  :   %12.8f    (%u/%u)\n", r_actual, ny, nx);
    printf("  peak spectrum             :   %12.8f dB (expected 0.0 dB)\n", Ypeak);
    printf("  peak frequency            :   %12.8f    (expected %-12.8f)\n", fpeak, fy);
    printf("  max sidelobe              :   %12.8f dB (expected at least %.2f dB)\n", max_sidelobe, -As);


    // 
    // export results
    //
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s: auto-generated file\n",OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n");
    fprintf(fid,"delay=%f;\n", delay);
    fprintf(fid,"r=%12.8f;\n", r);

    fprintf(fid,"nx = %u;\n", nx);
    fprintf(fid,"x = zeros(1,nx);\n");
    for (i=0; i<nx; i++)
        fprintf(fid,"x(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));

    fprintf(fid,"ny = %u;\n", ny);
    fprintf(fid,"y = zeros(1,ny);\n");
    for (i=0; i<ny; i++)
        fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));

    // time-domain results
    fprintf(fid,"\n");
    fprintf(fid,"%% plot time-domain result\n");
    fprintf(fid,"tx=[0:(length(x)-1)];\n");
    fprintf(fid,"ty=[0:(length(y)-1)]/r-delay;\n");
    fprintf(fid,"tmin = min(tx(1),  ty(1)  );\n");
    fprintf(fid,"tmax = max(tx(end),ty(end));\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"subplot(2,1,1);\n");
    fprintf(fid,"  plot(tx,real(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
    fprintf(fid,"       ty,real(y),'-s','Color',[0.5 0 0],    'MarkerSize',1);\n");
    fprintf(fid,"  legend('original','resampled','location','northeast');");
    fprintf(fid,"  axis([tmin tmax -1.2 1.2]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('real');\n");
    fprintf(fid,"subplot(2,1,2);\n");
    fprintf(fid,"  plot(tx,imag(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
    fprintf(fid,"       ty,imag(y),'-s','Color',[0 0.5 0],    'MarkerSize',1);\n");
    fprintf(fid,"  legend('original','resampled','location','northeast');");
    fprintf(fid,"  axis([tmin tmax -1.2 1.2]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('imag');\n");

    // frequency-domain results
    fprintf(fid,"\n\n");
    fprintf(fid,"%% plot frequency-domain result\n");
    fprintf(fid,"nfft=4*2^nextpow2(max(nx,ny));\n");
    fprintf(fid,"%% estimate PSD, normalize by array length\n");
    fprintf(fid,"X=20*log10(abs(fftshift(fft(x,nfft)/length(x))));\n");
    fprintf(fid,"Y=20*log10(abs(fftshift(fft(y,nfft)/length(y))));\n");
    fprintf(fid,"G=max(X);\n");
    fprintf(fid,"X=X-G;\n");
    fprintf(fid,"Y=Y-G;\n");
    fprintf(fid,"f=[0:(nfft-1)]/nfft-0.5;\n");
    fprintf(fid,"figure;\n");
    fprintf(fid,"if r>1, fx = f/r; fy = f;   %% interpolated\n");
    fprintf(fid,"else,   fx = f;   fy = f*r; %% decimated\n");
    fprintf(fid,"end;\n");
    fprintf(fid,"plot(fx,X,'LineWidth',1,  'Color',[0.5 0.5 0.5],...\n");
    fprintf(fid,"     fy,Y,'LineWidth',1.5,'Color',[0.1 0.3 0.5]);\n");
    fprintf(fid,"grid on;\n");
    fprintf(fid,"xlabel('Frequency (normalized to original sample rate)');\n");
    fprintf(fid,"ylabel('PSD [dB]');\n");
    fprintf(fid,"legend('original','resampled','location','northeast');");
    fprintf(fid,"axis([-0.5 0.5 -120 20]);\n");

    fclose(fid);
    printf("results written to %s\n",OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}