1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
//
// msresamp2_crcf_example.c
//
// Demonstration of the multi-stage half-band resampler
//
#include <stdio.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include <getopt.h>
#include "liquid.h"
#define OUTPUT_FILENAME "msresamp2_crcf_example.m"
// print usage/help message
void usage()
{
printf("Usage: %s [OPTION]\n", __FILE__);
printf(" -h : print help\n");
printf(" -r <rate> : resampling rate (output/input), default: 0.25\n");
printf(" -s <atten> : stop-band attenuation [dB], default: 60\n");
printf(" -n <num> : number of low-rate samples, default: 256\n");
printf(" -f <freq> : pass-band cut-off frequency, default: 0.45\n");
}
int main(int argc, char*argv[])
{
// options
float r = 0.25f; // resampling rate (output/input)
float As = 60.0f; // resampling filter stop-band attenuation [dB]
unsigned int n = 128; // number of low-rate samples
float fc = 0.45f; // filter pass-band cut-off frequency
int dopt;
while ((dopt = getopt(argc,argv,"hr:s:n:f:")) != EOF) {
switch (dopt) {
case 'h': usage(); return 0;
case 'r': r = atof(optarg); break;
case 's': As = atof(optarg); break;
case 'n': n = atoi(optarg); break;
case 'f': fc = atof(optarg); break;
default:
exit(1);
}
}
// validate input
if (n == 0) {
fprintf(stderr,"error: %s, number of input samples must be greater than zero\n", argv[0]);
exit(1);
} else if (r <= 0.0f) {
fprintf(stderr,"error: %s, resampling rate must be greater than zero\n", argv[0]);
exit(1);
} else if ( roundf(fabsf(log2f(r))) > 10 ) {
fprintf(stderr,"error: %s, resampling rate unreasonable\n", argv[0]);
exit(1);
}
// determine type and compute number of stages
unsigned int num_stages = (unsigned int) roundf(fabsf(log2f(r)));
int type = r < 1. ? LIQUID_RESAMP_DECIM : LIQUID_RESAMP_INTERP;
printf("msresamp2:\n");
printf(" rate : %12.8f\n", r);
printf(" log2(r) : %12.8f\n", log2f(r));
printf(" type : %s\n", type == LIQUID_RESAMP_DECIM ? "decim" : "interp");
printf(" stages : %u\n", num_stages);
unsigned int i;
// create multi-stage arbitrary resampler object
msresamp2_crcf q = msresamp2_crcf_create(type, num_stages, fc, 0.0f, As);
msresamp2_crcf_print(q);
float delay = msresamp2_crcf_get_delay(q);
r = msresamp2_crcf_get_rate(q);
// number of input samples (zero-padded)
unsigned int M = (1 << num_stages); // integer resampling rate
unsigned int nx = (type == LIQUID_RESAMP_DECIM) ? n * M : n;
unsigned int ny = (type == LIQUID_RESAMP_DECIM) ? n : n * M;
unsigned int wlen = round(0.75 * nx);
// allocate memory for arrays
float complex x[nx];
float complex y[ny];
// generate input signal: tone just before the edge of filter band
float ftone = 0.95 * fc * ((type == LIQUID_RESAMP_DECIM) ? r : 1);
float wsum = 0.0f;
for (i=0; i<nx; i++) {
// compute window
float w = i < wlen ? liquid_kaiser(i, wlen, 10.0f) : 0.0f;
// apply window to complex sinusoid
x[i] = cexpf(_Complex_I*2*M_PI*ftone*i) * w;
// accumulate window
wsum += w;
}
// run resampler
unsigned int dx = (type == LIQUID_RESAMP_INTERP) ? 1 : M; // input stride
unsigned int dy = (type == LIQUID_RESAMP_INTERP) ? M : 1; // output stride
for (i=0; i<n; i++)
msresamp2_crcf_execute(q, &x[i*dx], &y[i*dy]);
// clean up allocated objects
msresamp2_crcf_destroy(q);
//
// analyze resulting signal
//
// check that the actual resampling rate is close to the target
float r_actual = (float)ny / (float)nx;
float fy = ftone / r; // expected output frequency
// run FFT and ensure that carrier has moved and that image
// frequencies and distortion have been adequately suppressed
unsigned int nfft = 4 << liquid_nextpow2(n*M);
float complex yfft[nfft]; // fft input
float complex Yfft[nfft]; // fft output
for (i=0; i<nfft; i++)
yfft[i] = i < ny ? y[i] : 0.0f;
fft_run(nfft, yfft, Yfft, LIQUID_FFT_FORWARD, 0);
fft_shift(Yfft, nfft); // run FFT shift
// find peak frequency
float Ypeak = 0.0f;
float fpeak = 0.0f;
float max_sidelobe = -1e9f; // maximum side-lobe [dB]
float main_lobe_width = 0.07f; // TODO: figure this out from Kaiser's equations
for (i=0; i<nfft; i++) {
// normalized output frequency
float f = (float)i/(float)nfft - 0.5f;
// scale FFT output appropriately
float Ymag = 20*log10f( cabsf(Yfft[i] / (r * wsum)) );
// find frequency location of maximum magnitude
if (Ymag > Ypeak || i==0) {
Ypeak = Ymag;
fpeak = f;
}
// find peak side-lobe value, ignoring frequencies
// within a certain range of signal frequency
if ( fabsf(f-fy) > main_lobe_width )
max_sidelobe = Ymag > max_sidelobe ? Ymag : max_sidelobe;
}
// print results and check frequency location
printf("output results:\n");
printf(" output delay : %12.8f samples\n", delay);
printf(" desired resampling rate : %12.8f\n", r);
printf(" measured resampling rate : %12.8f (%u/%u)\n", r_actual, ny, nx);
printf(" peak spectrum : %12.8f dB (expected 0.0 dB)\n", Ypeak);
printf(" peak frequency : %12.8f (expected %-12.8f)\n", fpeak, fy);
printf(" max sidelobe : %12.8f dB (expected at least %.2f dB)\n", max_sidelobe, -As);
//
// export results
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s: auto-generated file\n",OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"delay=%f;\n", delay);
fprintf(fid,"r=%12.8f;\n", r);
fprintf(fid,"nx = %u;\n", nx);
fprintf(fid,"x = zeros(1,nx);\n");
for (i=0; i<nx; i++)
fprintf(fid,"x(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
fprintf(fid,"ny = %u;\n", ny);
fprintf(fid,"y = zeros(1,ny);\n");
for (i=0; i<ny; i++)
fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
// time-domain results
fprintf(fid,"\n");
fprintf(fid,"%% plot time-domain result\n");
fprintf(fid,"tx=[0:(length(x)-1)];\n");
fprintf(fid,"ty=[0:(length(y)-1)]/r-delay;\n");
fprintf(fid,"tmin = min(tx(1), ty(1) );\n");
fprintf(fid,"tmax = max(tx(end),ty(end));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"subplot(2,1,1);\n");
fprintf(fid," plot(tx,real(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
fprintf(fid," ty,real(y),'-s','Color',[0.5 0 0], 'MarkerSize',1);\n");
fprintf(fid," legend('original','resampled','location','northeast');");
fprintf(fid," axis([tmin tmax -1.2 1.2]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('real');\n");
fprintf(fid,"subplot(2,1,2);\n");
fprintf(fid," plot(tx,imag(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
fprintf(fid," ty,imag(y),'-s','Color',[0 0.5 0], 'MarkerSize',1);\n");
fprintf(fid," legend('original','resampled','location','northeast');");
fprintf(fid," axis([tmin tmax -1.2 1.2]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('imag');\n");
// frequency-domain results
fprintf(fid,"\n\n");
fprintf(fid,"%% plot frequency-domain result\n");
fprintf(fid,"nfft=4*2^nextpow2(max(nx,ny));\n");
fprintf(fid,"%% estimate PSD, normalize by array length\n");
fprintf(fid,"X=20*log10(abs(fftshift(fft(x,nfft)/length(x))));\n");
fprintf(fid,"Y=20*log10(abs(fftshift(fft(y,nfft)/length(y))));\n");
fprintf(fid,"G=max(X);\n");
fprintf(fid,"X=X-G;\n");
fprintf(fid,"Y=Y-G;\n");
fprintf(fid,"f=[0:(nfft-1)]/nfft-0.5;\n");
fprintf(fid,"figure;\n");
fprintf(fid,"if r>1, fx = f/r; fy = f; %% interpolated\n");
fprintf(fid,"else, fx = f; fy = f*r; %% decimated\n");
fprintf(fid,"end;\n");
fprintf(fid,"plot(fx,X,'LineWidth',1, 'Color',[0.5 0.5 0.5],...\n");
fprintf(fid," fy,Y,'LineWidth',1.5,'Color',[0.1 0.3 0.5]);\n");
fprintf(fid,"grid on;\n");
fprintf(fid,"xlabel('Frequency (normalized to original sample rate)');\n");
fprintf(fid,"ylabel('PSD [dB]');\n");
fprintf(fid,"legend('original','resampled','location','northeast');");
fprintf(fid,"axis([-0.5 0.5 -120 20]);\n");
fclose(fid);
printf("results written to %s\n",OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|