1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
//
// msresamp_crcf_example.c
//
// Demonstration of the multi-stage arbitrary resampler
//
#include <stdio.h>
#include <stdlib.h>
#include <complex.h>
#include <math.h>
#include <getopt.h>
#include "liquid.h"
#define OUTPUT_FILENAME "msresamp_crcf_example.m"
// print usage/help message
void usage()
{
printf("Usage: %s [OPTION]\n", __FILE__);
printf(" h : print help\n");
printf(" r : resampling rate (output/input), default: 0.23175\n");
printf(" s : stop-band attenuation [dB], default: 60\n");
printf(" n : number of input samples, default: 400\n");
printf(" f : input signal frequency, default: 0.017\n");
}
int main(int argc, char*argv[])
{
// options
float r=0.23175f; // resampling rate (output/input)
float As=60.0f; // resampling filter stop-band attenuation [dB]
unsigned int n=400; // number of input samples
float fc=0.017f; // complex sinusoid frequency
int dopt;
while ((dopt = getopt(argc,argv,"hr:s:n:f:")) != EOF) {
switch (dopt) {
case 'h': usage(); return 0;
case 'r': r = atof(optarg); break;
case 's': As = atof(optarg); break;
case 'n': n = atoi(optarg); break;
case 'f': fc = atof(optarg); break;
default:
exit(1);
}
}
// validate input
if (n == 0) {
fprintf(stderr,"error: %s, number of input samples must be greater than zero\n", argv[0]);
exit(1);
} else if (r <= 0.0f) {
fprintf(stderr,"error: %s, resampling rate must be greater than zero\n", argv[0]);
exit(1);
} else if ( fabsf(log2f(r)) > 10 ) {
fprintf(stderr,"error: %s, resampling rate unreasonable\n", argv[0]);
exit(1);
}
unsigned int i;
// create multi-stage arbitrary resampler object
msresamp_crcf q = msresamp_crcf_create(r,As);
msresamp_crcf_print(q);
float delay = msresamp_crcf_get_delay(q);
// number of input samples (zero-padded)
unsigned int nx = n + (int)ceilf(delay) + 10;
// output buffer with extra padding for good measure
unsigned int ny_alloc = (unsigned int) (2*(float)nx * r); // allocation for output
// allocate memory for arrays
float complex x[nx];
float complex y[ny_alloc];
// generate input signal
float wsum = 0.0f;
for (i=0; i<nx; i++) {
// compute window
float w = i < n ? liquid_kaiser(i, n, 10.0f) : 0.0f;
// apply window to complex sinusoid
x[i] = cexpf(_Complex_I*2*M_PI*fc*i) * w;
// accumulate window
wsum += w;
}
// run resampler
unsigned int ny;
msresamp_crcf_execute(q, x, nx, y, &ny);
// clean up allocated objects
msresamp_crcf_destroy(q);
//
// analyze resulting signal
//
// check that the actual resampling rate is close to the target
float r_actual = (float)ny / (float)nx;
float fy = fc / r; // expected output frequency
// run FFT and ensure that carrier has moved and that image
// frequencies and distortion have been adequately suppressed
unsigned int nfft = 1 << liquid_nextpow2(ny);
float complex yfft[nfft]; // fft input
float complex Yfft[nfft]; // fft output
for (i=0; i<nfft; i++)
yfft[i] = i < ny ? y[i] : 0.0f;
fft_run(nfft, yfft, Yfft, LIQUID_FFT_FORWARD, 0);
fft_shift(Yfft, nfft); // run FFT shift
// find peak frequency
float Ypeak = 0.0f;
float fpeak = 0.0f;
float max_sidelobe = -1e9f; // maximum side-lobe [dB]
float main_lobe_width = 0.07f; // TODO: figure this out from Kaiser's equations
for (i=0; i<nfft; i++) {
// normalized output frequency
float f = (float)i/(float)nfft - 0.5f;
// scale FFT output appropriately
float Ymag = 20*log10f( cabsf(Yfft[i] / (r * wsum)) );
// find frequency location of maximum magnitude
if (Ymag > Ypeak || i==0) {
Ypeak = Ymag;
fpeak = f;
}
// find peak side-lobe value, ignoring frequencies
// within a certain range of signal frequency
if ( fabsf(f-fy) > main_lobe_width )
max_sidelobe = Ymag > max_sidelobe ? Ymag : max_sidelobe;
}
// print results and check frequency location
printf("output results:\n");
printf(" output delay : %12.8f samples\n", delay);
printf(" desired resampling rate : %12.8f\n", r);
printf(" measured resampling rate : %12.8f (%u/%u)\n", r_actual, ny, nx);
printf(" peak spectrum : %12.8f dB (expected 0.0 dB)\n", Ypeak);
printf(" peak frequency : %12.8f (expected %-12.8f)\n", fpeak, fy);
printf(" max sidelobe : %12.8f dB (expected at least %.2f dB)\n", max_sidelobe, -As);
//
// export results
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s: auto-generated file\n",OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"delay=%f;\n", delay);
fprintf(fid,"r=%12.8f;\n", r);
fprintf(fid,"nx = %u;\n", nx);
fprintf(fid,"x = zeros(1,nx);\n");
for (i=0; i<nx; i++)
fprintf(fid,"x(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
fprintf(fid,"ny = %u;\n", ny);
fprintf(fid,"y = zeros(1,ny);\n");
for (i=0; i<ny; i++)
fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
// time-domain results
fprintf(fid,"\n");
fprintf(fid,"%% plot time-domain result\n");
fprintf(fid,"tx=[0:(length(x)-1)];\n");
fprintf(fid,"ty=[0:(length(y)-1)]/r-delay;\n");
fprintf(fid,"tmin = min(tx(1), ty(1) );\n");
fprintf(fid,"tmax = max(tx(end),ty(end));\n");
fprintf(fid,"figure;\n");
fprintf(fid,"subplot(2,1,1);\n");
fprintf(fid," plot(tx,real(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
fprintf(fid," ty,real(y),'-s','Color',[0.5 0 0], 'MarkerSize',1);\n");
fprintf(fid," legend('original','resampled','location','northeast');");
fprintf(fid," axis([tmin tmax -1.2 1.2]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('real');\n");
fprintf(fid,"subplot(2,1,2);\n");
fprintf(fid," plot(tx,imag(x),'-s','Color',[0.5 0.5 0.5],'MarkerSize',1,...\n");
fprintf(fid," ty,imag(y),'-s','Color',[0 0.5 0], 'MarkerSize',1);\n");
fprintf(fid," legend('original','resampled','location','northeast');");
fprintf(fid," axis([tmin tmax -1.2 1.2]);\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('imag');\n");
// frequency-domain results
fprintf(fid,"\n\n");
fprintf(fid,"%% plot frequency-domain result\n");
fprintf(fid,"nfft=2^nextpow2(max(nx,ny));\n");
fprintf(fid,"%% estimate PSD, normalize by array length\n");
fprintf(fid,"X=20*log10(abs(fftshift(fft(x,nfft)/length(x))));\n");
fprintf(fid,"Y=20*log10(abs(fftshift(fft(y,nfft)/length(y))));\n");
fprintf(fid,"G=max(X);\n");
fprintf(fid,"X=X-G;\n");
fprintf(fid,"Y=Y-G;\n");
fprintf(fid,"f=[0:(nfft-1)]/nfft-0.5;\n");
fprintf(fid,"figure;\n");
fprintf(fid,"if r>1, fx = f/r; fy = f; %% interpolated\n");
fprintf(fid,"else, fx = f; fy = f*r; %% decimated\n");
fprintf(fid,"end;\n");
fprintf(fid,"plot(fx,X,'LineWidth',1, 'Color',[0.5 0.5 0.5],...\n");
fprintf(fid," fy,Y,'LineWidth',1.5,'Color',[0.1 0.3 0.5]);\n");
fprintf(fid,"grid on;\n");
fprintf(fid,"xlabel('normalized frequency');\n");
fprintf(fid,"ylabel('PSD [dB]');\n");
fprintf(fid,"legend('original','resampled','location','northeast');");
fprintf(fid,"axis([-0.5 0.5 -120 20]);\n");
fclose(fid);
printf("results written to %s\n",OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|