File: nco_pll_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (153 lines) | stat: -rw-r--r-- 4,837 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//
// nco_pll_example.c
//
// This example demonstrates how the use the nco/pll object
// (numerically-controlled oscillator with phase-locked loop) interface for
// tracking to a complex sinusoid.  The loop bandwidth, phase offset, and
// other parameter can be specified via the command-line interface.
//
// SEE ALSO: nco_example.c
//           nco_pll_modem_example.c
//

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <getopt.h>

#include "liquid.h"

#define OUTPUT_FILENAME "nco_pll_example.m"

// print usage/help message
void usage()
{
    printf("nco_pll_example [options]\n");
    printf("  u/h   : print usage\n");
    printf("  b     : pll bandwidth, default: 0.01\n");
    printf("  n     : number of samples, default: 512\n");
    printf("  p     : phase offset (radians), default: pi/4\n");
    printf("  f     : frequency offset (radians), default: 0.3\n");
}

int main(int argc, char*argv[])
{
    // set random seed
    srand( time(NULL) );

    // parameters
    float phase_offset     = 0.0f;      // initial phase offset
    float frequency_offset = 0.40f;     // initial frequency offset
    float pll_bandwidth    = 0.003f;    // phase-locked loop bandwidth
    unsigned int n         = 512;       // number of iterations

    int dopt;
    while ((dopt = getopt(argc,argv,"uhb:n:p:f:")) != EOF) {
        switch (dopt) {
        case 'u':
        case 'h':   usage();    return 0;
        case 'b':   pll_bandwidth = atof(optarg);   break;
        case 'n':   n = atoi(optarg);               break;
        case 'p':   phase_offset = atof(optarg);    break;
        case 'f':   frequency_offset= atof(optarg); break;
        default:
            exit(1);
        }
    }

    // objects
    nco_crcf nco_tx = nco_crcf_create(LIQUID_VCO);
    nco_crcf nco_rx = nco_crcf_create(LIQUID_VCO);

    // initialize objects
    nco_crcf_set_phase(nco_tx, phase_offset);
    nco_crcf_set_frequency(nco_tx, frequency_offset);
    nco_crcf_pll_set_bandwidth(nco_rx, pll_bandwidth);

    // generate input
    float complex x[n];
    float complex y[n];
    float phase_error[n];

    unsigned int i;
    for (i=0; i<n; i++) {
        // generate complex sinusoid
        nco_crcf_cexpf(nco_tx, &x[i]);

        // update nco
        nco_crcf_step(nco_tx);
    }

    // run loop
    for (i=0; i<n; i++) {
#if 0
        // test resetting bandwidth in middle of acquisition
        if (i == 100) nco_pll_set_bandwidth(nco_rx, pll_bandwidth*0.2f);
#endif

        // generate input
        nco_crcf_cexpf(nco_rx, &y[i]);

        // update rx nco object
        nco_crcf_step(nco_rx);

        // compute phase error
        phase_error[i] = cargf(x[i]*conjf(y[i]));

        // update pll
        nco_crcf_pll_step(nco_rx, phase_error[i]);

        // print phase error
        if ( (i+1)%50 == 0 || i==n-1 || i==0)
            printf("%4u : phase error = %12.8f\n", i+1, phase_error[i]);
    }
    nco_crcf_destroy(nco_tx);
    nco_crcf_destroy(nco_rx);

    // write output file
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n");
    fprintf(fid,"n = %u;\n", n);
    fprintf(fid,"x = zeros(1,n);\n");
    fprintf(fid,"y = zeros(1,n);\n");
    for (i=0; i<n; i++) {
        fprintf(fid,"x(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
        fprintf(fid,"y(%4u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
        fprintf(fid,"e(%4u) = %12.4e;\n", i+1, phase_error[i]);
    }
    fprintf(fid,"t=0:(n-1);\n");
    fprintf(fid,"figure('color','white','position',[100 100 1200 600]);\n");
    fprintf(fid,"subplot(3,1,1);\n");
    fprintf(fid,"  hold on;\n");
    fprintf(fid,"  plot(t,real(x),'Color',[1 1 1]*0.8);\n");
    fprintf(fid,"  plot(t,real(y),'Color',[0 0.2 0.5]);\n");
    fprintf(fid,"  hold off;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('real');\n");
    fprintf(fid,"  axis([0 n -1.2 1.2]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,1,2);\n");
    fprintf(fid,"  hold on;\n");
    fprintf(fid,"  plot(t,imag(x),'Color',[1 1 1]*0.8);\n");
    fprintf(fid,"  plot(t,imag(y),'Color',[0 0.5 0.2]);\n");
    fprintf(fid,"  hold off;\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('imag');\n");
    fprintf(fid,"  axis([0 n -1.2 1.2]);\n");
    fprintf(fid,"  grid on;\n");
    fprintf(fid,"subplot(3,1,3);\n");
    fprintf(fid,"  plot(t,e,'Color',[0.5 0 0]);\n");
    fprintf(fid,"  xlabel('time');\n");
    fprintf(fid,"  ylabel('phase error');\n");
    fprintf(fid,"  axis([0 n -pi pi]);\n");
    fprintf(fid,"  grid on;\n");

    fclose(fid);
    printf("results written to %s.\n",OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}