1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//
// qdetector_example.c
//
// This example demonstrates the functionality of the qdetector object
// to detect an arbitrary signal in time in the presence of noise,
// carrier frequency/phase offsets, and fractional-sample timing
// offsets.
//
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <math.h>
#include <time.h>
#include "liquid.h"
#define OUTPUT_FILENAME "qdetector_cccf_example.m"
// print usage/help message
void usage()
{
printf("qdetector_cccf_example\n");
printf("options:\n");
printf(" h : print usage/help\n");
printf(" n : number of sync symbols, default: 80\n");
printf(" k : samples/symbol, default: 2\n");
printf(" m : filter delay, default: 7 sybmols\n");
printf(" b : excess bandwidth factor, default: 0.3\n");
printf(" F : carrier frequency offset, default: -0.01\n");
printf(" T : fractional sample offset, default: 0\n");
printf(" S : SNR [dB], default: 20 dB\n");
printf(" t : detection threshold, default: 0.3\n");
printf(" r : carrier offset search range,default: 0.05\n");
}
int main(int argc, char*argv[])
{
// options
unsigned int sequence_len = 80; // number of sync symbols
unsigned int k = 2; // samples/symbol
unsigned int m = 7; // filter delay [symbols]
float beta = 0.3f; // excess bandwidth factor
int ftype = LIQUID_FIRFILT_ARKAISER;
float tau = -0.3f; // fractional sample timing offset
float dphi = -0.01f; // carrier frequency offset
float phi = 0.5f; // carrier phase offset
float noise_floor = -30.0f; // noise floor [dB]
float SNRdB = 20.0f; // signal-to-noise ratio [dB]
float threshold = 0.5f; // detection threshold
float range = 0.05f; // carrier offset search range [radians/sample]
int dopt;
while ((dopt = getopt(argc,argv,"hn:k:m:b:F:T:S:t:r:")) != EOF) {
switch (dopt) {
case 'h': usage(); return 0;
case 'n': sequence_len = atoi(optarg); break;
case 'k': k = atoi(optarg); break;
case 'm': m = atoi(optarg); break;
case 'b': beta = atof(optarg); break;
case 'F': dphi = atof(optarg); break;
case 'T': tau = atof(optarg); break;
case 'S': SNRdB = atof(optarg); break;
case 't': threshold = atof(optarg); break;
case 'r': range = atof(optarg); break;
default:
exit(1);
}
}
unsigned int i;
// validate input
if (tau < -0.5f || tau > 0.5f) {
fprintf(stderr,"error: %s, fractional sample offset must be in [-0.5,0.5]\n", argv[0]);
exit(1);
}
// derived values
float nstd = powf(10.0f, noise_floor/20.0f);
float gamma = powf(10.0f, (SNRdB + noise_floor)/20.0f);
// generate synchronization sequence (QPSK symbols)
float complex sequence[sequence_len];
for (i=0; i<sequence_len; i++) {
sequence[i] = (rand() % 2 ? 1.0f : -1.0f) * M_SQRT1_2 +
(rand() % 2 ? 1.0f : -1.0f) * M_SQRT1_2 * _Complex_I;
}
//
float rxy = 0.0f;
float tau_hat = 0.0f;
float gamma_hat = 0.0f;
float dphi_hat = 0.0f;
float phi_hat = 0.0f;
int frame_detected = 0;
// create detector
qdetector_cccf q = qdetector_cccf_create_linear(sequence, sequence_len, ftype, k, m, beta);
qdetector_cccf_set_threshold(q, threshold);
qdetector_cccf_set_range (q, range);
qdetector_cccf_print(q);
//
unsigned int seq_len = qdetector_cccf_get_seq_len(q);
unsigned int buf_len = qdetector_cccf_get_buf_len(q);
unsigned int num_samples = 2*buf_len; // double buffer length to ensure detection
unsigned int num_symbols = buf_len;
// arrays
float complex y[num_samples]; // received signal
float complex syms_rx[num_symbols]; // recovered symbols
// get pointer to sequence and generate full sequence
float complex * v = (float complex*) qdetector_cccf_get_sequence(q);
unsigned int filter_delay = 15;
firfilt_crcf filter = firfilt_crcf_create_kaiser(2*filter_delay+1, 0.4f, 60.0f, -tau);
for (i=0; i<num_samples; i++) {
// add delay
firfilt_crcf_push(filter, i < seq_len ? v[i] : 0);
firfilt_crcf_execute(filter, &y[i]);
// channel gain
y[i] *= gamma;
// carrier offset
y[i] *= cexpf(_Complex_I*(dphi*i + phi));
// noise
y[i] += nstd*(randnf() + _Complex_I*randnf())*M_SQRT1_2;
}
firfilt_crcf_destroy(filter);
// run detection on sequence
for (i=0; i<num_samples; i++) {
v = qdetector_cccf_execute(q,y[i]);
if (v != NULL) {
printf("\nframe detected!\n");
frame_detected = 1;
// get statistics
rxy = qdetector_cccf_get_rxy(q);
tau_hat = qdetector_cccf_get_tau(q);
gamma_hat = qdetector_cccf_get_gamma(q);
dphi_hat = qdetector_cccf_get_dphi(q);
phi_hat = qdetector_cccf_get_phi(q);
break;
}
}
unsigned int num_syms_rx = 0; // output symbol counter
unsigned int counter = 0; // decimation counter
if (frame_detected) {
// recover symbols
firfilt_crcf mf = firfilt_crcf_create_rnyquist(ftype, k, m, beta, tau_hat);
firfilt_crcf_set_scale(mf, 1.0f / (float)(k*gamma_hat));
nco_crcf nco = nco_crcf_create(LIQUID_VCO);
nco_crcf_set_frequency(nco, dphi_hat);
nco_crcf_set_phase (nco, phi_hat);
for (i=0; i<buf_len; i++) {
//
float complex sample;
nco_crcf_mix_down(nco, v[i], &sample);
nco_crcf_step(nco);
// apply decimator
firfilt_crcf_push(mf, sample);
counter++;
if (counter == k-1)
firfilt_crcf_execute(mf, &syms_rx[num_syms_rx++]);
counter %= k;
}
nco_crcf_destroy(nco);
firfilt_crcf_destroy(mf);
}
// destroy objects
qdetector_cccf_destroy(q);
// print results
printf("\n");
printf("frame detected : %s\n", frame_detected ? "yes" : "no");
if (frame_detected) {
printf(" rxy : %8.3f\n", rxy);
printf(" gamma hat : %8.3f, actual=%8.3f (error=%8.3f)\n", gamma_hat, gamma, gamma_hat - gamma);
printf(" tau hat : %8.3f, actual=%8.3f (error=%8.3f) samples\n", tau_hat, tau, tau_hat - tau );
printf(" dphi hat : %8.5f, actual=%8.5f (error=%8.5f) rad/sample\n", dphi_hat, dphi, dphi_hat - dphi );
printf(" phi hat : %8.5f, actual=%8.5f (error=%8.5f) radians\n", phi_hat, phi, phi_hat - phi );
printf(" symbols rx : %u\n", num_syms_rx);
}
printf("\n");
//
// export results
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
fprintf(fid,"clear all\n");
fprintf(fid,"close all\n");
fprintf(fid,"sequence_len= %u;\n", sequence_len);
fprintf(fid,"num_samples = %u;\n", num_samples);
fprintf(fid,"y = zeros(1,num_samples);\n");
for (i=0; i<num_samples; i++)
fprintf(fid,"y(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(y[i]), cimagf(y[i]));
fprintf(fid,"num_syms_rx = %u;\n", num_syms_rx);
fprintf(fid,"syms_rx = zeros(1,num_syms_rx);\n");
for (i=0; i<num_syms_rx; i++)
fprintf(fid,"syms_rx(%4u) = %12.8f + j*%12.8f;\n", i+1, crealf(syms_rx[i]), cimagf(syms_rx[i]));
fprintf(fid,"t=[0:(num_samples-1)];\n");
fprintf(fid,"figure;\n");
fprintf(fid,"subplot(4,1,1);\n");
fprintf(fid," plot(t,real(y), t,imag(y));\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('time');\n");
fprintf(fid," ylabel('received signal');\n");
fprintf(fid,"subplot(4,1,2:4);\n");
fprintf(fid," plot(real(syms_rx), imag(syms_rx), 'x');\n");
fprintf(fid," axis([-1 1 -1 1]*1.5);\n");
fprintf(fid," axis square;\n");
fprintf(fid," grid on;\n");
fprintf(fid," xlabel('real');\n");
fprintf(fid," ylabel('imag');\n");
fclose(fid);
printf("results written to '%s'\n", OUTPUT_FILENAME);
return 0;
}
|