1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
//
// random_histogram_example.c
//
// This example tests the random number generators for different
// distributions.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <getopt.h>
#include "liquid.h"
#define OUTPUT_FILENAME "random_histogram_example.m"
// print usage/help message
void usage()
{
printf("random_histogram_example [options]\n");
printf(" -h : print usage\n");
printf(" -N : number of trials\n");
printf(" -n : number of histogram bins\n");
printf(" -d : distribution: {uniform, normal, exp, weib, gamma, nak, rice}\n");
printf(" -u : u UNIFORM: lower edge\n");
printf(" -v : v UNIFORM: upper edge\n");
printf(" -e : eta NORMAL: mean\n");
printf(" -s : sigma NORMAL: standard deviation\n");
printf(" -l : lambda EXPONENTIAL: decay factor\n");
printf(" -a : alpha WEIBULL: shape\n");
printf(" -b : beta WEIBULL: spread\n");
printf(" -g : gamma WEIBULL: threshold\n");
printf(" -A : alpha GAMMA: shape\n");
printf(" -B : beta GAMMA: spread\n");
printf(" -m : m NAKAGAMI: shape\n");
printf(" -o : omega NAKAGAMI: spread\n");
printf(" -K : K RICE-K: spread\n");
printf(" -O : omega RICE-K: spread\n");
}
int main(int argc, char*argv[])
{
srand(time(NULL));
unsigned long int num_trials = 100000; // number of trials
unsigned int num_bins = 30;
enum {
UNIFORM=0,
NORMAL,
EXPONENTIAL,
WEIBULL,
GAMMA,
NAKAGAMIM,
RICEK
} distribution=NORMAL;
// distribution parameters
float u = 0.0f; // UNIFORM: lower edge
float v = 1.0f; // UNIFORM: upper edge
float eta = 0.0f; // NORMAL: mean
float sigma = 1.0f; // NORMAL: standard deviation
float lambda = 3.0f; // EXPONENTIAL: decay factor
float alphaw = 1.0f; // WEIBULL: shape
float betaw = 1.0f; // WEIBULL: spread
float gammaw = 1.0f; // WEIBULL: threshold
float alphag = 4.5f; // GAMMA: shape
float betag = 1.0f; // GAMMA: spread
float m = 4.5f; // NAKAGAMI: shape factor
float omeganak = 1.0f; // NAKAGMAI: spread factor
float K = 4.0f; // RICE-K: K-factor (shape)
float omegarice = 1.0f; // RICE-K: spread factor
int dopt;
while ((dopt = getopt(argc,argv,"hN:n:d:u:v:e:s:l:a:b:g:A:B:m:o:K:O:")) != EOF) {
switch (dopt) {
case 'h':
usage();
return 0;
case 'N': num_trials = atoi(optarg); break;
case 'n': num_bins = atoi(optarg); break;
case 'd':
if (strcmp(optarg,"uniform")==0) distribution = UNIFORM;
else if (strcmp(optarg,"normal")==0) distribution = NORMAL;
else if (strcmp(optarg,"exp")==0) distribution = EXPONENTIAL;
else if (strcmp(optarg,"weib")==0) distribution = WEIBULL;
else if (strcmp(optarg,"gamma")==0) distribution = GAMMA;
else if (strcmp(optarg,"nak")==0) distribution = NAKAGAMIM;
else if (strcmp(optarg,"rice")==0) distribution = RICEK;
else {
fprintf(stderr,"error: %s, unknown/unsupported distribution '%s'\n", argv[0], optarg);
exit(1);
}
case 'u': u = atof(optarg); break;
case 'v': v = atof(optarg); break;
case 'e': eta = atof(optarg); break;
case 's': sigma = atof(optarg); break;
case 'l': lambda = atof(optarg); break;
case 'a': alphaw = atof(optarg); break;
case 'b': betaw = atof(optarg); break;
case 'g': gammaw = atof(optarg); break;
case 'A': alphag = atof(optarg); break;
case 'B': betag = atof(optarg); break;
case 'm': m = atof(optarg); break;
case 'o': omeganak = atof(optarg); break;
case 'K': K = atof(optarg); break;
case 'O': omegarice = atof(optarg); break;
default:
exit(1);
}
}
// validate input
if (num_bins == 0) {
fprintf(stderr,"error: %s, number of bins must be greater than zero\n", argv[0]);
exit(1);
} else if (num_trials == 0) {
fprintf(stderr,"error: %s, number of trials must be greater than zero\n", argv[0]);
exit(1);
}
float xmin = 0.0f;
float xmax = 1.0f;
unsigned long int i;
// make a guess at the histogram range so we don't need to
// store all the generated random variables in a giant array.
if (distribution == UNIFORM) {
xmin = u - 0.08*(v-u); // lower edge less 8% range
xmax = v + 0.08*(v-u); // upper edge plus 8% range
} else if (distribution == NORMAL) {
xmin = eta - 4.0f*sigma;
xmax = eta + 4.0f*sigma;
} else if (distribution == EXPONENTIAL) {
xmin = 0.0f;
xmax = 7.0f / lambda;
} else if (distribution == WEIBULL) {
xmin = gammaw;
xmax = gammaw + betaw*powf( -logf(1e-3f), 1.0f/alphaw );
} else if (distribution == GAMMA) {
xmin = 0.0f;
xmax = 6.5 * betag + 2.0*alphag;
} else if (distribution == NAKAGAMIM) {
xmin = 0.0f;
xmax = 1.5f*( powf(omeganak, 0.8f) + 1.0f/m );
} else if (distribution == RICEK) {
xmin = 0.0f;
xmax = 3.0f*logf(omegarice+1.0f) + 1.5f/(K+1.0f);
} else {
fprintf(stderr, "error: %s, unknown/unsupported distribution\n", argv[0]);
exit(1);
}
//
//float xspan = xmax - xmin;
float bin_width = (xmax - xmin) / (num_bins);
// initialize histogram
unsigned int hist[num_bins];
for (i=0; i<num_bins; i++)
hist[i] = 0;
// generate random variables
float x = 0.0f;
float m1 = 0.0f; // first moment
float m2 = 0.0f; // second moment
for (i=0; i<num_trials; i++) {
switch (distribution) {
case UNIFORM: x = randuf(u,v); break;
case NORMAL: x = sigma*randnf() + eta; break;
case EXPONENTIAL: x = randexpf(lambda); break;
case WEIBULL: x = randweibf(alphaw,betaw,gammaw); break;
case GAMMA: x = randgammaf(alphag,betag); break;
case NAKAGAMIM: x = randnakmf(m,omeganak); break;
case RICEK: x = randricekf(K,omegarice); break;
default:
fprintf(stderr,"error: %s, unknown/unsupported distribution\n", argv[0]);
exit(1);
}
// compute bin index
unsigned int index;
float ihat = num_bins * (x - xmin) / (xmax - xmin);
if (ihat < 0.0f)
index = 0;
else
index = (unsigned int)ihat;
if (index >= num_bins)
index = num_bins-1;
hist[index]++;
// update statistics
m1 += x; // first moment
m2 += x*x; // second moment
}
//
m1 /= (float)num_trials;
m2 /= (float)num_trials;
// compute expected distribution
unsigned int num_steps = 100;
float xstep = (xmax - xmin) / (num_steps - 1);
float f[num_steps];
float F[num_steps];
for (i=0; i<num_steps; i++) {
x = xmin + i*xstep;
switch (distribution) {
case UNIFORM:
f[i] = randuf_pdf(x,u,v);
F[i] = randuf_cdf(x,u,v);
break;
case NORMAL:
f[i] = randnf_pdf(x,eta,sigma);
F[i] = randnf_cdf(x,eta,sigma);
break;
case EXPONENTIAL:
f[i] = randexpf_pdf(x,lambda);
F[i] = randexpf_cdf(x,lambda);
break;
case WEIBULL:
f[i] = randweibf_pdf(x,alphaw,betaw,gammaw);
F[i] = randweibf_cdf(x,alphaw,betaw,gammaw);
break;
case GAMMA:
f[i] = randgammaf_pdf(x,alphag,betag);
F[i] = randgammaf_cdf(x,alphag,betag);
break;
case NAKAGAMIM:
f[i] = randnakmf_pdf(x,m,omeganak);
F[i] = randnakmf_cdf(x,m,omeganak);
break;
case RICEK:
f[i] = randricekf_pdf(x,K,omegarice);
F[i] = randricekf_cdf(x,K,omegarice);
break;
default:
fprintf(stderr,"error: %s, unknown/unsupported distribution\n", argv[0]);
exit(1);
}
}
// print results to screen
// find max(hist)
unsigned int hist_max = 0;
for (i=0; i<num_bins; i++)
hist_max = hist[i] > hist_max ? hist[i] : hist_max;
printf("%8s : %6s [%6s]\n", "x", "count", "prob.");
for (i=0; i<num_bins; i++) {
printf("%8.2f : %6u [%6.4f]", xmin + i*bin_width, hist[i], (float)hist[i] / (float)num_trials);
unsigned int k;
unsigned int n = round(60 * (float)hist[i] / (float)hist_max);
for (k=0; k<n; k++)
printf("#");
printf("\n");
}
// print distribution info, statistics
printf("statistics:\n");
switch (distribution) {
case UNIFORM:
printf(" distribution : %s\n", "uniform");
printf(" u : %f\n", u);
printf(" v : %f\n", v);
break;
case NORMAL:
printf(" distribution : %s\n", "normal (Gauss)");
printf(" eta : %f\n", eta);
printf(" sigma : %f\n", sigma);
break;
case EXPONENTIAL:
printf(" distribution : %s\n", "exponential");
printf(" lambda : %f\n", lambda);
break;
case WEIBULL:
printf(" distribution : %s\n", "Weibull");
printf(" alpha : %f\n", alphaw);
printf(" beta : %f\n", betaw);
printf(" gamma : %f\n", gammaw);
break;
case GAMMA:
printf(" distribution : %s\n", "gamma");
printf(" alpha : %f\n", alphag);
printf(" beta : %f\n", betag);
break;
case NAKAGAMIM:
printf(" distribution : %s\n", "Nakagami-m");
printf(" m : %f\n", m);
printf(" omega : %f\n", omeganak);
break;
case RICEK:
printf(" distribution : %s\n", "Rice-K");
printf(" K : %f\n", K);
printf(" omega : %f\n", omegarice);
break;
default:
fprintf(stderr,"error: %s, unknown/unsupported distribution\n", argv[0]);
exit(1);
}
printf("\n");
printf(" samples : %8lu\n", num_trials);
printf(" first moment, E( x } : %8.3f\n", m1);
printf(" second moment, E{x^2} : %8.3f\n", m2);
printf(" variance : %8.3f\n", m2 - m1*m1);
printf(" standard deviation : %8.3f\n", sqrtf(m2 - m1*m1));
//
// export results
//
FILE * fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s : auto-generated file\n\n", OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n");
fprintf(fid,"xmin = %12.4e;\n", xmin);
fprintf(fid,"xmax = %12.4e;\n", xmax);
fprintf(fid,"num_bins = %u;\n", num_bins);
fprintf(fid,"xspan = xmax - xmin;\n");
float F_hat = 0.0f;
for (i=0; i<num_bins; i++) {
x = xmin + ((float)i + 0.5f)*bin_width;
float h = (float)(hist[i]) / (num_trials * bin_width);
fprintf(fid,"xh(%3lu) = %12.4e; h(%3lu) = %12.4e;\n", i+1, x, i+1, h);
x = xmin + ((float)i + 1.0f)*bin_width;
F_hat += h;
fprintf(fid,"xH(%3lu) = %12.4e; H(%3lu) = %12.4e;\n", i+1, x, i+1, F_hat);
}
fprintf(fid,"H = H/H(end);\n");
for (i=0; i<num_steps; i++) {
x = xmin + i*xstep;
fprintf(fid,"xf(%3lu) = %12.4e; f(%3lu) = %12.4e; F(%3lu) = %12.4e;\n", i+1, x, i+1, f[i], i+1, F[i]);
}
// plot results
fprintf(fid,"figure;\n");
fprintf(fid,"plot(xh,h,'x', xf,f,'-');\n");
fprintf(fid,"xlabel('x');\n");
fprintf(fid,"ylabel('f_x(x)');\n");
fprintf(fid,"axis([(xmin-0.1*xspan) (xmax+0.1*xspan) 0 1.1*max([h f])]);\n");
fprintf(fid,"legend('histogram','true PDF',1);\n");
// plot results
fprintf(fid,"figure;\n");
fprintf(fid,"plot(xH,H,'x', xf,F,'-');\n");
fprintf(fid,"xlabel('x');\n");
fprintf(fid,"ylabel('f_x(x)');\n");
//fprintf(fid,"axis([(xmin-0.1*xspan) (xmax+0.1*xspan) 0 1]);\n");
fprintf(fid,"legend('histogram','true CDF',0);\n");
fclose(fid);
printf("results written to %s.\n",OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|