1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
//
// resamp2_crcf_example.c
//
// This example demonstrates the halfband resampler running as both an
// interpolator and a decimator. A narrow-band signal is first
// interpolated by a factor of 2, and then decimated. The resulting RMS
// error between the final signal and original is computed and printed
// to the screen.
//
#include <stdio.h>
#include <complex.h>
#include <math.h>
#include "liquid.h"
#define OUTPUT_FILENAME "resamp2_crcf_example.m"
int main() {
unsigned int m=5; // filter semi-length (actual length: 4*m+1)
float bw=0.13f; // input signal bandwidth
float fc=-0.597f; // input signal carrier frequency (radians/sample)
unsigned int num_samples=37; // number of input samples
float As=60.0f; // stop-band attenuation [dB]
unsigned int i;
// derived values
unsigned int n = num_samples + 2*m + 1; // adjusted input sequence length
// allocate memory for data arrays
float complex x[ n];
float complex y[2*n];
float complex z[ n];
// generate the baseband signal (filter pulse)
float h[num_samples];
liquid_firdes_kaiser(num_samples,bw,60.0f,0.0f,h);
for (i=0; i<n; i++)
x[i] = i < num_samples ? h[i] * cexpf(_Complex_I*fc*i) : 0.0f;
// create/print the half-band resampler, with a specified
// stopband attenuation level
resamp2_crcf q = resamp2_crcf_create(m,0,As);
resamp2_crcf_print(q);
// run interpolation stage
for (i=0; i<n; i++)
resamp2_crcf_interp_execute(q, x[i], &y[2*i]);
// clear resamp2 object
resamp2_crcf_reset(q);
resamp2_crcf_set_scale(q, 0.5f);
// execute decimation stage
for (i=0; i<n; i++)
resamp2_crcf_decim_execute(q, &y[2*i], &z[i]);
// clean up allocated objects
resamp2_crcf_destroy(q);
// compute RMS error
float rmse = 0.0f;
for (i=2*m; i<n; i++) {
float e = cabsf(x[i-2*m] - z[i]);
rmse += e*e;
}
rmse = sqrtf( rmse / (float)(n-2*m) );
printf("rms error : %12.4e\n", rmse);
//
// print results to file
//
FILE*fid = fopen(OUTPUT_FILENAME,"w");
fprintf(fid,"%% %s: auto-generated file\n",OUTPUT_FILENAME);
fprintf(fid,"clear all;\n");
fprintf(fid,"close all;\n\n");
fprintf(fid,"bw=%12.8f;\n", bw);
fprintf(fid,"n=%u;\n", n);
// output results
for (i=0; i<n; i++)
fprintf(fid,"x(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(x[i]), cimagf(x[i]));
for (i=0; i<2*n; i++)
fprintf(fid,"y(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(y[i]), cimagf(y[i]));
for (i=0; i<n; i++)
fprintf(fid,"z(%3u) = %12.4e + j*%12.4e;\n", i+1, crealf(z[i]), cimagf(z[i]));
// print results
fprintf(fid,"\n\n");
fprintf(fid,"figure('position',[100 100 1200 600]);\n");
fprintf(fid,"nfft=1024;\n");
fprintf(fid,"f = [0:(nfft-1)]/nfft - 0.5;\n");
fprintf(fid,"X = 20*log10(abs(fftshift(fft(x*bw*2,nfft))));\n");
fprintf(fid,"Y = 20*log10(abs(fftshift(fft(y*bw, nfft))));\n");
fprintf(fid,"Z = 20*log10(abs(fftshift(fft(z*bw*2,nfft))));\n");
fprintf(fid,"subplot(3,2,[1,3,5,]);\n");
fprintf(fid,"plot(f,X,f,Y,f,Z);\n");
fprintf(fid,"legend('original','up-converted','down-converted');\n");
fprintf(fid,"grid on;\n");
fprintf(fid,"axis([-0.5 0.5 -120 20]);\n");
fprintf(fid,"\n\n");
fprintf(fid,"t0 = 0:[n-1];\n");
fprintf(fid,"t1 = 0:[n*2-1];\n");
fprintf(fid,"subplot(3,2,2);\n");
fprintf(fid," plot(t0,real(x),t0,imag(x));\n");
fprintf(fid," legend('I','Q');\n");
fprintf(fid," axis([0 n -1 1]);\n");
fprintf(fid," ylabel('original');\n");
fprintf(fid,"subplot(3,2,4);\n");
fprintf(fid," plot(t1,real(y),t1,imag(y));\n");
fprintf(fid," axis([0 n*2 -1 1]);\n");
fprintf(fid," ylabel('interpolated');\n");
fprintf(fid,"subplot(3,2,6);\n");
fprintf(fid," plot(t0,real(z),t0,imag(z));\n");
fprintf(fid," axis([0 n -1 1]);\n");
fprintf(fid," ylabel('interp/decim');\n");
fclose(fid);
printf("results written to %s\n",OUTPUT_FILENAME);
printf("done.\n");
return 0;
}
|