File: spgramcf_example.c

package info (click to toggle)
liquid-dsp 1.7.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 9,216 kB
  • sloc: ansic: 115,859; sh: 3,513; makefile: 1,350; python: 274; asm: 11
file content (95 lines) | stat: -rw-r--r-- 2,775 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
//
// spgramcf_example.c
//
// Spectral periodogram example with complex inputs.
//

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "liquid.h"

#define OUTPUT_FILENAME "spgramcf_example.m"

int main() {
    // spectral periodogram options
    unsigned int nfft        =   1024;  // spectral periodogram FFT size
    unsigned int num_samples =    2e6;  // number of samples
    float        noise_floor = -60.0f;  // noise floor [dB]

    unsigned int i;

    // derived values
    float nstd = powf(10.0f, noise_floor/20.0f);

    // create spectral periodogram
    spgramcf q = spgramcf_create_default(nfft);
    spgramcf_print(q);

    // generate signal (band-pass filter with Hilbert transform)
    iirfilt_rrrf filter = iirfilt_rrrf_create_prototype(
            LIQUID_IIRDES_BUTTER,
            LIQUID_IIRDES_BANDPASS,
            LIQUID_IIRDES_SOS,
            9, 0.17f, 0.20f, 0.1f, 60.0f);
    firhilbf ht = firhilbf_create(13,60.0f);

    for (i=0; i<num_samples; i++) {
        // filter input noise signal
        float v = 0;
        iirfilt_rrrf_execute(filter, randnf(), &v);

        // filter off negative image (gain of 2)
        float complex y = 0;
        firhilbf_r2c_execute(ht, v, &y);

        // scale and add noise
        y = 0.5f*y + nstd * ( randnf() + _Complex_I*randnf() ) * M_SQRT1_2;

        // push resulting sample through periodogram
        spgramcf_push(q, y);
    }

    // explort to gnuplot
    spgramcf_set_rate      (q,200e6);
    spgramcf_export_gnuplot(q,"spgramcf_example.gnu");

    // compute power spectral density output
    float psd[nfft];
    spgramcf_get_psd(q, psd);

    // destroy objects
    iirfilt_rrrf_destroy(filter);
    firhilbf_destroy(ht);
    spgramcf_destroy(q);

    // export output file
    FILE * fid = fopen(OUTPUT_FILENAME,"w");
    fprintf(fid,"%% %s : auto-generated file\n", OUTPUT_FILENAME);
    fprintf(fid,"clear all;\n");
    fprintf(fid,"close all;\n\n");
    fprintf(fid,"nfft = %u;\n", nfft);
    fprintf(fid,"f    = [0:(nfft-1)]/nfft - 0.5;\n");
    fprintf(fid,"psd  = zeros(1,nfft);\n");
    fprintf(fid,"noise_floor = %12.6f;\n", noise_floor);
    
    for (i=0; i<nfft; i++)
        fprintf(fid,"psd(%6u) = %12.4e;\n", i+1, psd[i]);

    fprintf(fid,"figure;\n");
    fprintf(fid,"plot(f, psd, '-', 'LineWidth',1.5);\n");
    fprintf(fid,"xlabel('Normalized Frequency [f/F_s]');\n");
    fprintf(fid,"ylabel('Power Spectral Density [dB]');\n");
    fprintf(fid,"grid on;\n");
    fprintf(fid,"ymin = 10*floor([noise_floor-20]/10);\n");
    fprintf(fid,"ymax = 10*floor([noise_floor+80]/10);\n");
    fprintf(fid,"axis([-0.5 0.5 ymin ymax]);\n");

    fclose(fid);
    printf("results written to %s.\n", OUTPUT_FILENAME);

    printf("done.\n");
    return 0;
}