File: transmit.c

package info (click to toggle)
lirc 0.10.1-6.3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,404 kB
  • sloc: ansic: 26,717; cpp: 9,066; sh: 5,551; python: 4,362; makefile: 1,035; xml: 63
file content (525 lines) | stat: -rw-r--r-- 12,038 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/******************************************************************
** transmit.c **************************************************************
****************************************************************************
*
* functions that prepare IR codes for transmitting
*
* Copyright (C) 1999-2004 Christoph Bartelmus <lirc@bartelmus.de>
*
*/

/**
 * @file transmit.c
 * @brief Implements transmit.h
 * @author Christoph Bartelmus
 */

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif

/* if the gap is lower than this value, we will concatenate the
 * signals and send the signal chain at a single blow */
#define LIRCD_EXACT_GAP_THRESHOLD 10000

#ifdef HAVE_KERNEL_LIRC_H
#include <linux/lirc.h>
#else
#include "media/lirc.h"
#endif

#include "lirc/lirc_log.h"
#include "lirc/transmit.h"

static const logchannel_t logchannel = LOG_LIB;

/**
 * Struct for the global sending buffer.
 */
static struct sbuf {
	lirc_t* data;

	lirc_t	_data[WBUF_SIZE]; /**< Actual sending data. */
	int	wptr;
	int	too_long;
	int	is_biphase;
	lirc_t	pendingp;
	lirc_t	pendings;
	lirc_t	sum;
} send_buffer;


static void send_signals(lirc_t* signals, int n);
static int init_send_or_sim(struct ir_remote* remote, struct ir_ncode* code, int sim, int repeat_preset);

/*
 * sending stuff
 */

/**
 * Initializes the global sending buffer. (Just fills it with zeros.)
 */
void send_buffer_init(void)
{
	memset(&send_buffer, 0, sizeof(send_buffer));
}

static void clear_send_buffer(void)
{
	log_trace2("clearing transmit buffer");
	send_buffer.wptr = 0;
	send_buffer.too_long = 0;
	send_buffer.is_biphase = 0;
	send_buffer.pendingp = 0;
	send_buffer.pendings = 0;
	send_buffer.sum = 0;
}

static void add_send_buffer(lirc_t data)
{
	if (send_buffer.wptr < WBUF_SIZE) {
		log_trace2("adding to transmit buffer: %u", data);
		send_buffer.sum += data;
		send_buffer._data[send_buffer.wptr] = data;
		send_buffer.wptr++;
	} else {
		send_buffer.too_long = 1;
	}
}

static void send_pulse(lirc_t data)
{
	if (send_buffer.pendingp > 0) {
		send_buffer.pendingp += data;
	} else {
		if (send_buffer.pendings > 0) {
			add_send_buffer(send_buffer.pendings);
			send_buffer.pendings = 0;
		}
		send_buffer.pendingp = data;
	}
}

static void send_space(lirc_t data)
{
	if (send_buffer.wptr == 0 && send_buffer.pendingp == 0) {
		log_trace("first signal is a space!");
		return;
	}
	if (send_buffer.pendings > 0) {
		send_buffer.pendings += data;
	} else {
		if (send_buffer.pendingp > 0) {
			add_send_buffer(send_buffer.pendingp);
			send_buffer.pendingp = 0;
		}
		send_buffer.pendings = data;
	}
}

static int bad_send_buffer(void)
{
	if (send_buffer.too_long != 0)
		return 1;
	if (send_buffer.wptr == WBUF_SIZE && send_buffer.pendingp > 0)
		return 1;
	return 0;
}

static int check_send_buffer(void)
{
	int i;

	if (send_buffer.wptr == 0) {
		log_trace("nothing to send");
		return 0;
	}
	for (i = 0; i < send_buffer.wptr; i++) {
		if (send_buffer.data[i] == 0) {
			if (i % 2) {
				log_trace("invalid space: %d", i);
			} else {
				log_trace("invalid pulse: %d", i);
			}
			return 0;
		}
	}

	return 1;
}

static void flush_send_buffer(void)
{
	if (send_buffer.pendingp > 0) {
		add_send_buffer(send_buffer.pendingp);
		send_buffer.pendingp = 0;
	}
	if (send_buffer.pendings > 0) {
		add_send_buffer(send_buffer.pendings);
		send_buffer.pendings = 0;
	}
}

static void sync_send_buffer(void)
{
	if (send_buffer.pendingp > 0) {
		add_send_buffer(send_buffer.pendingp);
		send_buffer.pendingp = 0;
	}
	if (send_buffer.wptr > 0 && send_buffer.wptr % 2 == 0)
		send_buffer.wptr--;
}

static void send_header(struct ir_remote* remote)
{
	if (has_header(remote)) {
		send_pulse(remote->phead);
		send_space(remote->shead);
	}
}

static void send_foot(struct ir_remote* remote)
{
	if (has_foot(remote)) {
		send_space(remote->sfoot);
		send_pulse(remote->pfoot);
	}
}

static void send_lead(struct ir_remote* remote)
{
	if (remote->plead != 0)
		send_pulse(remote->plead);
}

static void send_trail(struct ir_remote* remote)
{
	if (remote->ptrail != 0)
		send_pulse(remote->ptrail);
}

static void send_data(struct ir_remote* remote, ir_code data, int bits, int done)
{
	int i;
	int all_bits = bit_count(remote);
	int toggle_bit_mask_bits = bits_set(remote->toggle_bit_mask);
	ir_code mask;

	data = reverse(data, bits);
	if (is_rcmm(remote)) {
		mask = 1 << (all_bits - 1 - done);
		if (bits % 2 || done % 2) {
			log_error("invalid bit number.");
			return;
		}
		for (i = 0; i < bits; i += 2, mask >>= 2) {
			switch (data & 3) {
			case 0:
				send_pulse(remote->pzero);
				send_space(remote->szero);
				break;
			/* 2 and 1 swapped due to reverse() */
			case 2:
				send_pulse(remote->pone);
				send_space(remote->sone);
				break;
			case 1:
				send_pulse(remote->ptwo);
				send_space(remote->stwo);
				break;
			case 3:
				send_pulse(remote->pthree);
				send_space(remote->sthree);
				break;
			}
			data = data >> 2;
		}
		return;
	} else if (is_xmp(remote)) {
		if (bits % 4 || done % 4) {
			log_error("invalid bit number.");
			return;
		}
		for (i = 0; i < bits; i += 4) {
			ir_code nibble;

			nibble = reverse(data & 0xf, 4);
			send_pulse(remote->pzero);
			send_space(remote->szero + nibble * remote->sone);
			data >>= 4;
		}
		return;
	}

	mask = ((ir_code)1) << (all_bits - 1 - done);
	for (i = 0; i < bits; i++, mask >>= 1) {
		if (has_toggle_bit_mask(remote) && mask & remote->toggle_bit_mask) {
			if (toggle_bit_mask_bits == 1) {
				/* backwards compatibility */
				data &= ~((ir_code)1);
				if (remote->toggle_bit_mask_state & mask)
					data |= (ir_code)1;
			} else {
				if (remote->toggle_bit_mask_state & mask)
					data ^= (ir_code)1;
			}
		}
		if (has_toggle_mask(remote) && mask & remote->toggle_mask && remote->toggle_mask_state % 2)
			data ^= 1;
		if (data & 1) {
			if (is_biphase(remote)) {
				if (mask & remote->rc6_mask) {
					send_space(2 * remote->sone);
					send_pulse(2 * remote->pone);
				} else {
					send_space(remote->sone);
					send_pulse(remote->pone);
				}
			} else if (is_space_first(remote)) {
				send_space(remote->sone);
				send_pulse(remote->pone);
			} else {
				send_pulse(remote->pone);
				send_space(remote->sone);
			}
		} else {
			if (mask & remote->rc6_mask) {
				send_pulse(2 * remote->pzero);
				send_space(2 * remote->szero);
			} else if (is_space_first(remote)) {
				send_space(remote->szero);
				send_pulse(remote->pzero);
			} else {
				send_pulse(remote->pzero);
				send_space(remote->szero);
			}
		}
		data = data >> 1;
	}
}

static void send_pre(struct ir_remote* remote)
{
	if (has_pre(remote)) {
		send_data(remote, remote->pre_data, remote->pre_data_bits, 0);
		if (remote->pre_p > 0 && remote->pre_s > 0) {
			send_pulse(remote->pre_p);
			send_space(remote->pre_s);
		}
	}
}

static void send_post(struct ir_remote* remote)
{
	if (has_post(remote)) {
		if (remote->post_p > 0 && remote->post_s > 0) {
			send_pulse(remote->post_p);
			send_space(remote->post_s);
		}
		send_data(remote, remote->post_data, remote->post_data_bits, remote->pre_data_bits + remote->bits);
	}
}

static void send_repeat(struct ir_remote* remote)
{
	send_lead(remote);
	send_pulse(remote->prepeat);
	send_space(remote->srepeat);
	send_trail(remote);
}

static void send_code(struct ir_remote* remote, ir_code code, int repeat)
{
	if (!repeat || !(remote->flags & NO_HEAD_REP))
		send_header(remote);
	send_lead(remote);
	send_pre(remote);
	send_data(remote, code, remote->bits, remote->pre_data_bits);
	send_post(remote);
	send_trail(remote);
	if (!repeat || !(remote->flags & NO_FOOT_REP))
		send_foot(remote);

	if (!repeat && remote->flags & NO_HEAD_REP && remote->flags & CONST_LENGTH)
		send_buffer.sum -= remote->phead + remote->shead;
}

static void send_signals(lirc_t* signals, int n)
{
	int i;

	for (i = 0; i < n; i++)
		add_send_buffer(signals[i]);
}

int send_buffer_put(struct ir_remote* remote, struct ir_ncode* code)
{
	return init_send_or_sim(remote, code, 0, 0);
}

/**
 * Do not document this function
 * @cond
 */
int init_sim(struct ir_remote* remote, struct ir_ncode* code, int repeat_preset)
{
	return init_send_or_sim(remote, code, 1, repeat_preset);
}
/**
 *@endcond
 */


int send_buffer_length(void)
{
	return send_buffer.wptr;
}


const lirc_t* send_buffer_data(void)
{
	return send_buffer.data;
}

lirc_t send_buffer_sum(void)
{
	return send_buffer.sum;
}

static int init_send_or_sim(struct ir_remote* remote, struct ir_ncode* code, int sim, int repeat_preset)
{
	int i, repeat = repeat_preset;

	if (is_grundig(remote) || is_goldstar(remote) || is_serial(remote) || is_bo(remote)) {
		if (!sim)
			log_error("sorry, can't send this protocol yet");
		return 0;
	}
	clear_send_buffer();
	if (strcmp(remote->name, "lirc") == 0) {
		send_buffer.data[send_buffer.wptr] = LIRC_EOF | 1;
		send_buffer.wptr += 1;
		goto final_check;
	}

	if (is_biphase(remote))
		send_buffer.is_biphase = 1;
	if (!sim) {
		if (repeat_remote == NULL)
			remote->repeat_countdown = remote->min_repeat;
		else
			repeat = 1;
	}

init_send_loop:
	if (repeat && has_repeat(remote)) {
		if (remote->flags & REPEAT_HEADER && has_header(remote))
			send_header(remote);
		send_repeat(remote);
	} else {
		if (!is_raw(remote)) {
			ir_code next_code;

			if (sim || code->transmit_state == NULL)
				next_code = code->code;
			else
				next_code = code->transmit_state->code;

			if (repeat && has_repeat_mask(remote))
				next_code ^= remote->repeat_mask;

			send_code(remote, next_code, repeat);
			if (!sim && has_toggle_mask(remote)) {
				remote->toggle_mask_state++;
				if (remote->toggle_mask_state == 4)
					remote->toggle_mask_state = 2;
			}
			send_buffer.data = send_buffer._data;
		} else {
			if (code->signals == NULL) {
				if (!sim)
					log_error("no signals for raw send");
				return 0;
			}
			if (send_buffer.wptr > 0) {
				send_signals(code->signals, code->length);
			} else {
				send_buffer.data = code->signals;
				send_buffer.wptr = code->length;
				for (i = 0; i < code->length; i++)
					send_buffer.sum += code->signals[i];
			}
		}
	}
	sync_send_buffer();
	if (bad_send_buffer()) {
		if (!sim)
			log_error("buffer too small");
		return 0;
	}
	if (sim)
		goto final_check;

	if (has_repeat_gap(remote) && repeat && has_repeat(remote)) {
		remote->min_remaining_gap = remote->repeat_gap;
		remote->max_remaining_gap = remote->repeat_gap;
	} else if (is_const(remote)) {
		if (min_gap(remote) > send_buffer.sum) {
			remote->min_remaining_gap = min_gap(remote) - send_buffer.sum;
			remote->max_remaining_gap = max_gap(remote) - send_buffer.sum;
		} else {
			log_error("too short gap: %u", remote->gap);
			remote->min_remaining_gap = min_gap(remote);
			remote->max_remaining_gap = max_gap(remote);
			return 0;
		}
	} else {
		remote->min_remaining_gap = min_gap(remote);
		remote->max_remaining_gap = max_gap(remote);
	}
	/* update transmit state */
	if (code->next != NULL) {
		if (code->transmit_state == NULL) {
			code->transmit_state = code->next;
		} else {
			code->transmit_state = code->transmit_state->next;
			if (is_xmp(remote) && code->transmit_state == NULL)
				code->transmit_state = code->next;
		}
	}
	if ((remote->repeat_countdown > 0 || code->transmit_state != NULL)
	    && remote->min_remaining_gap < LIRCD_EXACT_GAP_THRESHOLD) {
		if (send_buffer.data != send_buffer._data) {
			lirc_t* signals;
			int n;

			log_trace("unrolling raw signal optimisation");
			signals = send_buffer.data;
			n = send_buffer.wptr;
			send_buffer.data = send_buffer._data;
			send_buffer.wptr = 0;

			send_signals(signals, n);
		}
		log_trace("concatenating low gap signals");
		if (code->next == NULL || code->transmit_state == NULL)
			remote->repeat_countdown--;
		send_space(remote->min_remaining_gap);
		flush_send_buffer();
		send_buffer.sum = 0;

		repeat = 1;
		goto init_send_loop;
	}
	log_trace2("transmit buffer ready");

final_check:
	if (!check_send_buffer()) {
		if (!sim) {
			log_error("invalid send buffer");
			log_error("this remote configuration cannot be used to transmit");
		}
		return 0;
	}
	return 1;
}