File: server_embd.py

package info (click to toggle)
llama.cpp 5882%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 34,020 kB
  • sloc: cpp: 189,548; ansic: 115,889; python: 24,977; objc: 6,050; lisp: 5,741; sh: 5,571; makefile: 1,293; javascript: 807; xml: 259
file content (35 lines) | stat: -rw-r--r-- 969 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import asyncio
import asyncio.threads
import requests
import numpy as np


n = 8

result = []

async def requests_post_async(*args, **kwargs):
    return await asyncio.threads.to_thread(requests.post, *args, **kwargs)

async def main():
    model_url = "http://127.0.0.1:6900"
    responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
        url= f"{model_url}/embedding",
        json= {"content": "a "*1022}
    ) for i in range(n)])

    for response in responses:
        embedding = response.json()["embedding"]
        print(embedding[-8:])
        result.append(embedding)

asyncio.run(main())

# compute cosine similarity

for i in range(n-1):
    for j in range(i+1, n):
        embedding1 = np.array(result[i])
        embedding2 = np.array(result[j])
        similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
        print(f"Similarity between {i} and {j}: {similarity:.2f}")