File: compare-llama-bench.py

package info (click to toggle)
llama.cpp 5882%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 34,020 kB
  • sloc: cpp: 189,548; ansic: 115,889; python: 24,977; objc: 6,050; lisp: 5,741; sh: 5,571; makefile: 1,293; javascript: 807; xml: 259
file content (775 lines) | stat: -rwxr-xr-x 31,635 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/usr/bin/env python3

import logging
import argparse
import heapq
import sys
import os
from glob import glob
import sqlite3
import json
import csv
from typing import Optional, Union
from collections.abc import Iterator, Sequence

try:
    import git
    from tabulate import tabulate
except ImportError as e:
    print("the following Python libraries are required: GitPython, tabulate.") # noqa: NP100
    raise e


logger = logging.getLogger("compare-llama-bench")

# All llama-bench SQL fields
DB_FIELDS = [
    "build_commit", "build_number", "cpu_info",       "gpu_info",   "backends",     "model_filename",
    "model_type",   "model_size",   "model_n_params", "n_batch",    "n_ubatch",     "n_threads",
    "cpu_mask",     "cpu_strict",   "poll",           "type_k",     "type_v",       "n_gpu_layers",
    "split_mode",   "main_gpu",     "no_kv_offload",  "flash_attn", "tensor_split", "tensor_buft_overrides",
    "defrag_thold",
    "use_mmap",     "embeddings",   "no_op_offload",  "n_prompt",   "n_gen",        "n_depth",
    "test_time",    "avg_ns",       "stddev_ns",      "avg_ts",     "stddev_ts",
]

DB_TYPES = [
    "TEXT",    "INTEGER", "TEXT",    "TEXT",    "TEXT",    "TEXT",
    "TEXT",    "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
    "TEXT",    "INTEGER", "INTEGER", "TEXT",    "TEXT",    "INTEGER",
    "TEXT",    "INTEGER", "INTEGER", "INTEGER", "TEXT",    "TEXT",
    "REAL",
    "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER", "INTEGER",
    "TEXT",    "INTEGER", "INTEGER", "REAL",    "REAL",
]
assert len(DB_FIELDS) == len(DB_TYPES)

# Properties by which to differentiate results per commit:
KEY_PROPERTIES = [
    "cpu_info", "gpu_info", "backends", "n_gpu_layers", "tensor_buft_overrides", "model_filename", "model_type",
    "n_batch", "n_ubatch", "embeddings", "cpu_mask", "cpu_strict", "poll", "n_threads", "type_k", "type_v",
    "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen", "n_depth"
]

# Properties that are boolean and are converted to Yes/No for the table:
BOOL_PROPERTIES = ["embeddings", "cpu_strict", "use_mmap", "no_kv_offload", "flash_attn"]

# Header names for the table:
PRETTY_NAMES = {
    "cpu_info": "CPU", "gpu_info": "GPU", "backends": "Backends", "n_gpu_layers": "GPU layers",
    "tensor_buft_overrides": "Tensor overrides", "model_filename": "File", "model_type": "Model", "model_size": "Model size [GiB]",
    "model_n_params": "Num. of par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size", "embeddings": "Embeddings",
    "cpu_mask": "CPU mask", "cpu_strict": "CPU strict", "poll": "Poll", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
    "use_mmap": "Use mmap", "no_kv_offload": "NKVO", "split_mode": "Split mode", "main_gpu": "Main GPU", "tensor_split": "Tensor split",
    "flash_attn": "FlashAttention",
}

DEFAULT_SHOW = ["model_type"]  # Always show these properties by default.
DEFAULT_HIDE = ["model_filename"]  # Always hide these properties by default.
GPU_NAME_STRIP = ["NVIDIA GeForce ", "Tesla ", "AMD Radeon "]  # Strip prefixes for smaller tables.
MODEL_SUFFIX_REPLACE = {" - Small": "_S", " - Medium": "_M", " - Large": "_L"}

DESCRIPTION = """Creates tables from llama-bench data written to multiple JSON/CSV files, a single JSONL file or SQLite database. Example usage (Linux):

$ git checkout master
$ make clean && make llama-bench
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ git checkout some_branch
$ make clean && make llama-bench
$ ./llama-bench -o sql | sqlite3 llama-bench.sqlite
$ ./scripts/compare-llama-bench.py

Performance numbers from multiple runs per commit are averaged WITHOUT being weighted by the --repetitions parameter of llama-bench.
"""

parser = argparse.ArgumentParser(
    description=DESCRIPTION, formatter_class=argparse.RawDescriptionHelpFormatter)
help_b = (
    "The baseline commit to compare performance to. "
    "Accepts either a branch name, tag name, or commit hash. "
    "Defaults to latest master commit with data."
)
parser.add_argument("-b", "--baseline", help=help_b)
help_c = (
    "The commit whose performance is to be compared to the baseline. "
    "Accepts either a branch name, tag name, or commit hash. "
    "Defaults to the non-master commit for which llama-bench was run most recently."
)
parser.add_argument("-c", "--compare", help=help_c)
help_i = (
    "JSON/JSONL/SQLite/CSV files for comparing commits. "
    "Specify multiple times to use multiple input files (JSON/CSV only). "
    "Defaults to 'llama-bench.sqlite' in the current working directory. "
    "If no such file is found and there is exactly one .sqlite file in the current directory, "
    "that file is instead used as input."
)
parser.add_argument("-i", "--input", action="append", help=help_i)
help_o = (
    "Output format for the table. "
    "Defaults to 'pipe' (GitHub compatible). "
    "Also supports e.g. 'latex' or 'mediawiki'. "
    "See tabulate documentation for full list."
)
parser.add_argument("-o", "--output", help=help_o, default="pipe")
help_s = (
    "Columns to add to the table. "
    "Accepts a comma-separated list of values. "
    f"Legal values: {', '.join(KEY_PROPERTIES[:-3])}. "
    "Defaults to model name (model_type) and CPU and/or GPU name (cpu_info, gpu_info) "
    "plus any column where not all data points are the same. "
    "If the columns are manually specified, then the results for each unique combination of the "
    "specified values are averaged WITHOUT weighing by the --repetitions parameter of llama-bench."
)
parser.add_argument("--check", action="store_true", help="check if all required Python libraries are installed")
parser.add_argument("-s", "--show", help=help_s)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
parser.add_argument("--plot", help="generate a performance comparison plot and save to specified file (e.g., plot.png)")
parser.add_argument("--plot_x", help="parameter to use as x axis for plotting (default: n_depth)", default="n_depth")
parser.add_argument("--plot_log_scale", action="store_true", help="use log scale for x axis in plots (off by default)")

known_args, unknown_args = parser.parse_known_args()

logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)


if known_args.check:
    # Check if all required Python libraries are installed. Would have failed earlier if not.
    sys.exit(0)

if unknown_args:
    logger.error(f"Received unknown args: {unknown_args}.\n")
    parser.print_help()
    sys.exit(1)

input_file = known_args.input
if not input_file and os.path.exists("./llama-bench.sqlite"):
    input_file = ["llama-bench.sqlite"]
if not input_file:
    sqlite_files = glob("*.sqlite")
    if len(sqlite_files) == 1:
        input_file = sqlite_files

if not input_file:
    logger.error("Cannot find a suitable input file, please provide one.\n")
    parser.print_help()
    sys.exit(1)


class LlamaBenchData:
    repo: Optional[git.Repo]
    build_len_min: int
    build_len_max: int
    build_len: int = 8
    builds: list[str] = []
    check_keys = set(KEY_PROPERTIES + ["build_commit", "test_time", "avg_ts"])

    def __init__(self):
        try:
            self.repo = git.Repo(".", search_parent_directories=True)
        except git.InvalidGitRepositoryError:
            self.repo = None

    def _builds_init(self):
        self.build_len = self.build_len_min

    def _check_keys(self, keys: set) -> Optional[set]:
        """Private helper method that checks against required data keys and returns missing ones."""
        if not keys >= self.check_keys:
            return self.check_keys - keys
        return None

    def find_parent_in_data(self, commit: git.Commit) -> Optional[str]:
        """Helper method to find the most recent parent measured in number of commits for which there is data."""
        heap: list[tuple[int, git.Commit]] = [(0, commit)]
        seen_hexsha8 = set()
        while heap:
            depth, current_commit = heapq.heappop(heap)
            current_hexsha8 = commit.hexsha[:self.build_len]
            if current_hexsha8 in self.builds:
                return current_hexsha8
            for parent in commit.parents:
                parent_hexsha8 = parent.hexsha[:self.build_len]
                if parent_hexsha8 not in seen_hexsha8:
                    seen_hexsha8.add(parent_hexsha8)
                    heapq.heappush(heap, (depth + 1, parent))
        return None

    def get_all_parent_hexsha8s(self, commit: git.Commit) -> Sequence[str]:
        """Helper method to recursively get hexsha8 values for all parents of a commit."""
        unvisited = [commit]
        visited   = []

        while unvisited:
            current_commit = unvisited.pop(0)
            visited.append(current_commit.hexsha[:self.build_len])
            for parent in current_commit.parents:
                if parent.hexsha[:self.build_len] not in visited:
                    unvisited.append(parent)

        return visited

    def get_commit_name(self, hexsha8: str) -> str:
        """Helper method to find a human-readable name for a commit if possible."""
        if self.repo is None:
            return hexsha8
        for h in self.repo.heads:
            if h.commit.hexsha[:self.build_len] == hexsha8:
                return h.name
        for t in self.repo.tags:
            if t.commit.hexsha[:self.build_len] == hexsha8:
                return t.name
        return hexsha8

    def get_commit_hexsha8(self, name: str) -> Optional[str]:
        """Helper method to search for a commit given a human-readable name."""
        if self.repo is None:
            return None
        for h in self.repo.heads:
            if h.name == name:
                return h.commit.hexsha[:self.build_len]
        for t in self.repo.tags:
            if t.name == name:
                return t.commit.hexsha[:self.build_len]
        for c in self.repo.iter_commits("--all"):
            if c.hexsha[:self.build_len] == name[:self.build_len]:
                return c.hexsha[:self.build_len]
        return None

    def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
        """Helper method that gets rows of (build_commit, test_time) sorted by the latter."""
        return []

    def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
        """
        Helper method that gets table rows for some list of properties.
        Rows are created by combining those where all provided properties are equal.
        The resulting rows are then grouped by the provided properties and the t/s values are averaged.
        The returned rows are unique in terms of property combinations.
        """
        return []


class LlamaBenchDataSQLite3(LlamaBenchData):
    connection: sqlite3.Connection
    cursor: sqlite3.Cursor

    def __init__(self):
        super().__init__()
        self.connection = sqlite3.connect(":memory:")
        self.cursor = self.connection.cursor()
        self.cursor.execute(f"CREATE TABLE test({', '.join(' '.join(x) for x in zip(DB_FIELDS, DB_TYPES))});")

    def _builds_init(self):
        if self.connection:
            self.build_len_min = self.cursor.execute("SELECT MIN(LENGTH(build_commit)) from test;").fetchone()[0]
            self.build_len_max = self.cursor.execute("SELECT MAX(LENGTH(build_commit)) from test;").fetchone()[0]

            if self.build_len_min != self.build_len_max:
                logger.warning("Data contains commit hashes of differing lengths. It's possible that the wrong commits will be compared. "
                               "Try purging the the database of old commits.")
                self.cursor.execute(f"UPDATE test SET build_commit = SUBSTRING(build_commit, 1, {self.build_len_min});")

            builds = self.cursor.execute("SELECT DISTINCT build_commit FROM test;").fetchall()
            self.builds = list(map(lambda b: b[0], builds))  # list[tuple[str]] -> list[str]
        super()._builds_init()

    def builds_timestamp(self, reverse: bool = False) -> Union[Iterator[tuple], Sequence[tuple]]:
        data = self.cursor.execute(
            "SELECT build_commit, test_time FROM test ORDER BY test_time;").fetchall()
        return reversed(data) if reverse else data

    def get_rows(self, properties: list[str], hexsha8_baseline: str, hexsha8_compare: str) -> Sequence[tuple]:
        select_string = ", ".join(
            [f"tb.{p}" for p in properties] + ["tb.n_prompt", "tb.n_gen", "tb.n_depth", "AVG(tb.avg_ts)", "AVG(tc.avg_ts)"])
        equal_string = " AND ".join(
            [f"tb.{p} = tc.{p}" for p in KEY_PROPERTIES] + [
                f"tb.build_commit = '{hexsha8_baseline}'", f"tc.build_commit = '{hexsha8_compare}'"]
        )
        group_order_string = ", ".join([f"tb.{p}" for p in properties] + ["tb.n_gen", "tb.n_prompt", "tb.n_depth"])
        query = (f"SELECT {select_string} FROM test tb JOIN test tc ON {equal_string} "
                 f"GROUP BY {group_order_string} ORDER BY {group_order_string};")
        return self.cursor.execute(query).fetchall()


class LlamaBenchDataSQLite3File(LlamaBenchDataSQLite3):
    def __init__(self, data_file: str):
        super().__init__()

        self.connection.close()
        self.connection = sqlite3.connect(data_file)
        self.cursor = self.connection.cursor()
        self._builds_init()

    @staticmethod
    def valid_format(data_file: str) -> bool:
        connection = sqlite3.connect(data_file)
        cursor = connection.cursor()

        try:
            if cursor.execute("PRAGMA schema_version;").fetchone()[0] == 0:
                raise sqlite3.DatabaseError("The provided input file does not exist or is empty.")
        except sqlite3.DatabaseError as e:
            logger.debug(f'"{data_file}" is not a valid SQLite3 file.', exc_info=e)
            cursor = None

        connection.close()
        return True if cursor else False


class LlamaBenchDataJSONL(LlamaBenchDataSQLite3):
    def __init__(self, data_file: str):
        super().__init__()

        with open(data_file, "r", encoding="utf-8") as fp:
            for i, line in enumerate(fp):
                parsed = json.loads(line)

                for k in parsed.keys() - set(DB_FIELDS):
                    del parsed[k]

                if (missing_keys := self._check_keys(parsed.keys())):
                    raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")

                self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))

        self._builds_init()

    @staticmethod
    def valid_format(data_file: str) -> bool:
        try:
            with open(data_file, "r", encoding="utf-8") as fp:
                for line in fp:
                    json.loads(line)
                    break
        except Exception as e:
            logger.debug(f'"{data_file}" is not a valid JSONL file.', exc_info=e)
            return False

        return True


class LlamaBenchDataJSON(LlamaBenchDataSQLite3):
    def __init__(self, data_files: list[str]):
        super().__init__()

        for data_file in data_files:
            with open(data_file, "r", encoding="utf-8") as fp:
                parsed = json.load(fp)

                for i, entry in enumerate(parsed):
                    for k in entry.keys() - set(DB_FIELDS):
                        del entry[k]

                    if (missing_keys := self._check_keys(entry.keys())):
                        raise RuntimeError(f"Missing required data key(s) at entry {i + 1}: {', '.join(missing_keys)}")

                    self.cursor.execute(f"INSERT INTO test({', '.join(entry.keys())}) VALUES({', '.join('?' * len(entry))});", tuple(entry.values()))

        self._builds_init()

    @staticmethod
    def valid_format(data_files: list[str]) -> bool:
        if not data_files:
            return False

        for data_file in data_files:
            try:
                with open(data_file, "r", encoding="utf-8") as fp:
                    json.load(fp)
            except Exception as e:
                logger.debug(f'"{data_file}" is not a valid JSON file.', exc_info=e)
                return False

        return True


class LlamaBenchDataCSV(LlamaBenchDataSQLite3):
    def __init__(self, data_files: list[str]):
        super().__init__()

        for data_file in data_files:
            with open(data_file, "r", encoding="utf-8") as fp:
                for i, parsed in enumerate(csv.DictReader(fp)):
                    keys = set(parsed.keys())

                    for k in keys - set(DB_FIELDS):
                        del parsed[k]

                    if (missing_keys := self._check_keys(keys)):
                        raise RuntimeError(f"Missing required data key(s) at line {i + 1}: {', '.join(missing_keys)}")

                    self.cursor.execute(f"INSERT INTO test({', '.join(parsed.keys())}) VALUES({', '.join('?' * len(parsed))});", tuple(parsed.values()))

        self._builds_init()

    @staticmethod
    def valid_format(data_files: list[str]) -> bool:
        if not data_files:
            return False

        for data_file in data_files:
            try:
                with open(data_file, "r", encoding="utf-8") as fp:
                    for parsed in csv.DictReader(fp):
                        break
            except Exception as e:
                logger.debug(f'"{data_file}" is not a valid CSV file.', exc_info=e)
                return False

        return True


bench_data = None
if len(input_file) == 1:
    if LlamaBenchDataSQLite3File.valid_format(input_file[0]):
        bench_data = LlamaBenchDataSQLite3File(input_file[0])
    elif LlamaBenchDataJSON.valid_format(input_file):
        bench_data = LlamaBenchDataJSON(input_file)
    elif LlamaBenchDataJSONL.valid_format(input_file[0]):
        bench_data = LlamaBenchDataJSONL(input_file[0])
    elif LlamaBenchDataCSV.valid_format(input_file):
        bench_data = LlamaBenchDataCSV(input_file)
else:
    if LlamaBenchDataJSON.valid_format(input_file):
        bench_data = LlamaBenchDataJSON(input_file)
    elif LlamaBenchDataCSV.valid_format(input_file):
        bench_data = LlamaBenchDataCSV(input_file)

if not bench_data:
    raise RuntimeError("No valid (or some invalid) input files found.")

if not bench_data.builds:
    raise RuntimeError(f"{input_file} does not contain any builds.")


hexsha8_baseline = name_baseline = None

# If the user specified a baseline, try to find a commit for it:
if known_args.baseline is not None:
    if known_args.baseline in bench_data.builds:
        hexsha8_baseline = known_args.baseline
    if hexsha8_baseline is None:
        hexsha8_baseline = bench_data.get_commit_hexsha8(known_args.baseline)
        name_baseline = known_args.baseline
    if hexsha8_baseline is None:
        logger.error(f"cannot find data for baseline={known_args.baseline}.")
        sys.exit(1)
# Otherwise, search for the most recent parent of master for which there is data:
elif bench_data.repo is not None:
    hexsha8_baseline = bench_data.find_parent_in_data(bench_data.repo.heads.master.commit)

    if hexsha8_baseline is None:
        logger.error("No baseline was provided and did not find data for any master branch commits.\n")
        parser.print_help()
        sys.exit(1)
else:
    logger.error("No baseline was provided and the current working directory "
                 "is not part of a git repository from which a baseline could be inferred.\n")
    parser.print_help()
    sys.exit(1)


name_baseline = bench_data.get_commit_name(hexsha8_baseline)

hexsha8_compare = name_compare = None

# If the user has specified a compare value, try to find a corresponding commit:
if known_args.compare is not None:
    if known_args.compare in bench_data.builds:
        hexsha8_compare = known_args.compare
    if hexsha8_compare is None:
        hexsha8_compare = bench_data.get_commit_hexsha8(known_args.compare)
        name_compare = known_args.compare
    if hexsha8_compare is None:
        logger.error(f"cannot find data for compare={known_args.compare}.")
        sys.exit(1)
# Otherwise, search for the commit for llama-bench was most recently run
# and that is not a parent of master:
elif bench_data.repo is not None:
    hexsha8s_master = bench_data.get_all_parent_hexsha8s(bench_data.repo.heads.master.commit)
    for (hexsha8, _) in bench_data.builds_timestamp(reverse=True):
        if hexsha8 not in hexsha8s_master:
            hexsha8_compare = hexsha8
            break

    if hexsha8_compare is None:
        logger.error("No compare target was provided and did not find data for any non-master commits.\n")
        parser.print_help()
        sys.exit(1)
else:
    logger.error("No compare target was provided and the current working directory "
                 "is not part of a git repository from which a compare target could be inferred.\n")
    parser.print_help()
    sys.exit(1)

name_compare = bench_data.get_commit_name(hexsha8_compare)

# If the user provided columns to group the results by, use them:
if known_args.show is not None:
    show = known_args.show.split(",")
    unknown_cols = []
    for prop in show:
        if prop not in KEY_PROPERTIES[:-3]:  # Last three values are n_prompt, n_gen, n_depth.
            unknown_cols.append(prop)
    if unknown_cols:
        logger.error(f"Unknown values for --show: {', '.join(unknown_cols)}")
        parser.print_usage()
        sys.exit(1)
    rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)
# Otherwise, select those columns where the values are not all the same:
else:
    rows_full = bench_data.get_rows(KEY_PROPERTIES, hexsha8_baseline, hexsha8_compare)
    properties_different = []
    for i, kp_i in enumerate(KEY_PROPERTIES):
        if kp_i in DEFAULT_SHOW or kp_i in ["n_prompt", "n_gen", "n_depth"]:
            continue
        for row_full in rows_full:
            if row_full[i] != rows_full[0][i]:
                properties_different.append(kp_i)
                break

    show = []
    # Show CPU and/or GPU by default even if the hardware for all results is the same:
    if rows_full and "n_gpu_layers" not in properties_different:
        ngl = int(rows_full[0][KEY_PROPERTIES.index("n_gpu_layers")])

        if ngl != 99 and "cpu_info" not in properties_different:
            show.append("cpu_info")

    show += properties_different

    index_default = 0
    for prop in ["cpu_info", "gpu_info", "n_gpu_layers", "main_gpu"]:
        if prop in show:
            index_default += 1
    show = show[:index_default] + DEFAULT_SHOW + show[index_default:]
    for prop in DEFAULT_HIDE:
        try:
            show.remove(prop)
        except ValueError:
            pass

    # Add plot_x parameter to parameters to show if it's not already present:
    if known_args.plot:
        for k, v in PRETTY_NAMES.items():
            if v == known_args.plot_x and k not in show:
                show.append(k)
                break

    rows_show = bench_data.get_rows(show, hexsha8_baseline, hexsha8_compare)

if not rows_show:
    logger.error(f"No comparable data was found between {name_baseline} and {name_compare}.\n")
    sys.exit(1)

table = []
for row in rows_show:
    n_prompt = int(row[-5])
    n_gen    = int(row[-4])
    n_depth  = int(row[-3])
    if n_prompt != 0 and n_gen == 0:
        test_name = f"pp{n_prompt}"
    elif n_prompt == 0 and n_gen != 0:
        test_name = f"tg{n_gen}"
    else:
        test_name = f"pp{n_prompt}+tg{n_gen}"
    if n_depth != 0:
        test_name = f"{test_name}@d{n_depth}"
    #           Regular columns    test name    avg t/s values              Speedup
    #            VVVVVVVVVVVVV     VVVVVVVVV    VVVVVVVVVVVVVV              VVVVVVV
    table.append(list(row[:-5]) + [test_name] + list(row[-2:]) + [float(row[-1]) / float(row[-2])])

# Some a-posteriori fixes to make the table contents prettier:
for bool_property in BOOL_PROPERTIES:
    if bool_property in show:
        ip = show.index(bool_property)
        for row_table in table:
            row_table[ip] = "Yes" if int(row_table[ip]) == 1 else "No"

if "model_type" in show:
    ip = show.index("model_type")
    for (old, new) in MODEL_SUFFIX_REPLACE.items():
        for row_table in table:
            row_table[ip] = row_table[ip].replace(old, new)

if "model_size" in show:
    ip = show.index("model_size")
    for row_table in table:
        row_table[ip] = float(row_table[ip]) / 1024 ** 3

if "gpu_info" in show:
    ip = show.index("gpu_info")
    for row_table in table:
        for gns in GPU_NAME_STRIP:
            row_table[ip] = row_table[ip].replace(gns, "")

        gpu_names = row_table[ip].split(", ")
        num_gpus = len(gpu_names)
        all_names_the_same = len(set(gpu_names)) == 1
        if len(gpu_names) >= 2 and all_names_the_same:
            row_table[ip] = f"{num_gpus}x {gpu_names[0]}"

headers  = [PRETTY_NAMES[p] for p in show]
headers += ["Test", f"t/s {name_baseline}", f"t/s {name_compare}", "Speedup"]

if known_args.plot:
    def create_performance_plot(table_data: list[list[str]], headers: list[str], baseline_name: str, compare_name: str, output_file: str, plot_x_param: str, log_scale: bool = False):
        try:
            import matplotlib.pyplot as plt
            import matplotlib
            matplotlib.use('Agg')
        except ImportError as e:
            logger.error("matplotlib is required for --plot.")
            raise e

        data_headers = headers[:-4] # Exclude the last 4 columns (Test, baseline t/s, compare t/s, Speedup)
        plot_x_index = None
        plot_x_label = plot_x_param

        if plot_x_param not in ["n_prompt", "n_gen", "n_depth"]:
            pretty_name = PRETTY_NAMES.get(plot_x_param, plot_x_param)
            if pretty_name in data_headers:
                plot_x_index = data_headers.index(pretty_name)
                plot_x_label = pretty_name
            elif plot_x_param in data_headers:
                plot_x_index = data_headers.index(plot_x_param)
                plot_x_label = plot_x_param
            else:
                logger.error(f"Parameter '{plot_x_param}' not found in current table columns. Available columns: {', '.join(data_headers)}")
                return

        grouped_data = {}

        for i, row in enumerate(table_data):
            group_key_parts = []
            test_name = row[-4]

            base_test = ""
            x_value = None

            if plot_x_param in ["n_prompt", "n_gen", "n_depth"]:
                for j, val in enumerate(row[:-4]):
                    header_name = data_headers[j]
                    if val is not None and str(val).strip():
                        group_key_parts.append(f"{header_name}={val}")

                if plot_x_param == "n_prompt" and "pp" in test_name:
                    base_test = test_name.split("@")[0]
                    x_value = base_test
                elif plot_x_param == "n_gen" and "tg" in test_name:
                    x_value = test_name.split("@")[0]
                elif plot_x_param == "n_depth" and "@d" in test_name:
                    base_test = test_name.split("@d")[0]
                    x_value = int(test_name.split("@d")[1])
                else:
                    base_test = test_name

                if base_test.strip():
                    group_key_parts.append(f"Test={base_test}")
            else:
                for j, val in enumerate(row[:-4]):
                    if j != plot_x_index:
                        header_name = data_headers[j]
                        if val is not None and str(val).strip():
                            group_key_parts.append(f"{header_name}={val}")
                    else:
                        x_value = val

                group_key_parts.append(f"Test={test_name}")

            group_key = tuple(group_key_parts)

            if group_key not in grouped_data:
                grouped_data[group_key] = []

            grouped_data[group_key].append({
                'x_value': x_value,
                'baseline': float(row[-3]),
                'compare': float(row[-2]),
                'speedup': float(row[-1])
            })

        if not grouped_data:
            logger.error("No data available for plotting")
            return

        def make_axes(num_groups, max_cols=2, base_size=(8, 4)):
            from math import ceil
            cols = 1 if num_groups == 1 else min(max_cols, num_groups)
            rows = ceil(num_groups / cols)

            # Scale figure size by grid dimensions
            w, h = base_size
            fig, ax_arr = plt.subplots(rows, cols,
                                       figsize=(w * cols, h * rows),
                                       squeeze=False)

            axes = ax_arr.flatten()[:num_groups]
            return fig, axes

        num_groups = len(grouped_data)
        fig, axes = make_axes(num_groups)

        plot_idx = 0

        for group_key, points in grouped_data.items():
            if plot_idx >= len(axes):
                break
            ax = axes[plot_idx]

            try:
                points_sorted = sorted(points, key=lambda p: float(p['x_value']) if p['x_value'] is not None else 0)
                x_values = [float(p['x_value']) if p['x_value'] is not None else 0 for p in points_sorted]
            except ValueError:
                points_sorted = sorted(points, key=lambda p: group_key)
                x_values = [p['x_value'] for p in points_sorted]

            baseline_vals = [p['baseline'] for p in points_sorted]
            compare_vals = [p['compare'] for p in points_sorted]

            ax.plot(x_values, baseline_vals, 'o-', color='skyblue',
                    label=f'{baseline_name}', linewidth=2, markersize=6)
            ax.plot(x_values, compare_vals, 's--', color='lightcoral', alpha=0.8,
                    label=f'{compare_name}', linewidth=2, markersize=6)

            if log_scale:
                ax.set_xscale('log', base=2)
                unique_x = sorted(set(x_values))
                ax.set_xticks(unique_x)
                ax.set_xticklabels([str(int(x)) for x in unique_x])

            title_parts = []
            for part in group_key:
                if '=' in part:
                    key, value = part.split('=', 1)
                    title_parts.append(f"{key}: {value}")

            title = ', '.join(title_parts) if title_parts else "Performance comparison"

            ax.set_xlabel(plot_x_label, fontsize=12, fontweight='bold')
            ax.set_ylabel('Tokens per second (t/s)', fontsize=12, fontweight='bold')
            ax.set_title(title, fontsize=12, fontweight='bold')
            ax.legend(loc='best', fontsize=10)
            ax.grid(True, alpha=0.3)

            plot_idx += 1

        for i in range(plot_idx, len(axes)):
            axes[i].set_visible(False)

        fig.suptitle(f'Performance comparison: {compare_name} vs. {baseline_name}',
                     fontsize=14, fontweight='bold')
        fig.subplots_adjust(top=1)

        plt.tight_layout()
        plt.savefig(output_file, dpi=300, bbox_inches='tight')
        plt.close()

    create_performance_plot(table, headers, name_baseline, name_compare, known_args.plot, known_args.plot_x, known_args.plot_log_scale)

print(tabulate( # noqa: NP100
    table,
    headers=headers,
    floatfmt=".2f",
    tablefmt=known_args.output
))