File: utils.hpp

package info (click to toggle)
llama.cpp 5882%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 34,020 kB
  • sloc: cpp: 189,548; ansic: 115,889; python: 24,977; objc: 6,050; lisp: 5,741; sh: 5,571; makefile: 1,293; javascript: 807; xml: 259
file content (1356 lines) | stat: -rw-r--r-- 50,204 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
#pragma once

#include "common.h"
#include "log.h"
#include "llama.h"
#include "arg.h" // common_remote_get_content
#include "base64.hpp"
#include "mtmd.h"
#include "mtmd-helper.h"
#include "chat.h"

// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
// disable Nagle's algorithm
#define CPPHTTPLIB_TCP_NODELAY true
#include <cpp-httplib/httplib.h>

#define JSON_ASSERT GGML_ASSERT
#include <nlohmann/json.hpp>

#include <random>
#include <sstream>
#include <string>
#include <vector>
#include <memory>
#include <cinttypes>

#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"

using json = nlohmann::ordered_json;

#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)

#define SRV_INF(fmt, ...) LOG_INF("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv  %12.*s: " fmt, 12, __func__, __VA_ARGS__)

#define QUE_INF(fmt, ...) LOG_INF("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_WRN(fmt, ...) LOG_WRN("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_ERR(fmt, ...) LOG_ERR("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define QUE_DBG(fmt, ...) LOG_DBG("que  %12.*s: " fmt, 12, __func__, __VA_ARGS__)

using raw_buffer = std::vector<uint8_t>;

template <typename T>
static T json_value(const json & body, const std::string & key, const T & default_value) {
    // Fallback null to default value
    if (body.contains(key) && !body.at(key).is_null()) {
        try {
            return body.at(key);
        } catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
            LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
            return default_value;
        }
    } else {
        return default_value;
    }
}

const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "-" + LLAMA_COMMIT);

// thin wrapper around common_grammar_trigger with (de)serialization functions
struct server_grammar_trigger {
    common_grammar_trigger value;

    server_grammar_trigger() = default;
    server_grammar_trigger(const common_grammar_trigger & value) : value(value) {}
    server_grammar_trigger(const json & in) {
        value.type = (common_grammar_trigger_type) in.at("type").get<int>();
        value.value = in.at("value").get<std::string>();
        if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
            value.token = (llama_token) in.at("token").get<int>();
        }
    }

    json to_json() const {
        json out {
            {"type", (int) value.type},
            {"value", value.value},
        };
        if (value.type == COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN) {
            out["token"] = (int) value.token;
        }
        return out;
    }
};

//
// tokenizer and input processing utils
//

static bool json_is_array_of_numbers(const json & data) {
    if (data.is_array()) {
        for (const auto & e : data) {
            if (!e.is_number_integer()) {
                return false;
            }
        }
        return true;
    }
    return false;
}

// is array having BOTH numbers & strings?
static bool json_is_array_of_mixed_numbers_strings(const json & data) {
    bool seen_string = false;
    bool seen_number = false;
    if (data.is_array()) {
        for (const auto & e : data) {
            seen_string |= e.is_string();
            seen_number |= e.is_number_integer();
            if (seen_number && seen_string) {
                return true;
            }
        }
    }
    return false;
}

// get value by path(key1 / key2)
static json json_get_nested_values(const std::vector<std::string> & paths, const json & js) {
    json result = json::object();

    for (const std::string & path : paths) {
        json current = js;
        const auto keys = string_split<std::string>(path, /*separator*/ '/');
        bool valid_path = true;
        for (const std::string & k : keys) {
            if (valid_path && current.is_object() && current.contains(k)) {
                current = current[k];
            } else {
                valid_path = false;
            }
        }
        if (valid_path) {
            result[path] = current;
        }
    }
    return result;
}

/**
 * this handles 2 cases:
 * - only string, example: "string"
 * - mixed string and tokens, example: [12, 34, "string", 56, 78]
 */
static llama_tokens tokenize_mixed(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
    // If `add_bos` is true, we only add BOS, when json_prompt is a string,
    // or the first element of the json_prompt array is a string.
    llama_tokens prompt_tokens;

    if (json_prompt.is_array()) {
        bool first = true;
        for (const auto & p : json_prompt) {
            if (p.is_string()) {
                auto s = p.template get<std::string>();

                llama_tokens p;
                if (first) {
                    p = common_tokenize(vocab, s, add_special, parse_special);
                    first = false;
                } else {
                    p = common_tokenize(vocab, s, false, parse_special);
                }

                prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
            } else {
                if (first) {
                    first = false;
                }

                prompt_tokens.push_back(p.template get<llama_token>());
            }
        }
    } else {
        auto s = json_prompt.template get<std::string>();
        prompt_tokens = common_tokenize(vocab, s, add_special, parse_special);
    }

    return prompt_tokens;
}

/**
 * break the input "prompt" object into multiple prompt if needed, then tokenize them
 * this supports these cases:
 * - "prompt": "string"
 * - "prompt": [12, 34, 56]
 * - "prompt": [12, 34, "string", 56, 78]
 * and multiple prompts (multi-tasks):
 * - "prompt": ["string1", "string2"]
 * - "prompt": ["string1", [12, 34, 56]]
 * - "prompt": [[12, 34, 56], [78, 90, 12]]
 * - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
 */
static std::vector<llama_tokens> tokenize_input_prompts(const llama_vocab * vocab, const json & json_prompt, bool add_special, bool parse_special) {
    std::vector<llama_tokens> result;
    if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
        // string or mixed
        result.push_back(tokenize_mixed(vocab, json_prompt, add_special, parse_special));
    } else if (json_is_array_of_numbers(json_prompt)) {
        // array of tokens
        result.push_back(json_prompt.get<llama_tokens>());
    } else if (json_prompt.is_array()) {
        // array of prompts
        result.reserve(json_prompt.size());
        for (const auto & p : json_prompt) {
            if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
                result.push_back(tokenize_mixed(vocab, p, add_special, parse_special));
            } else if (json_is_array_of_numbers(p)) {
                // array of tokens
                result.push_back(p.get<llama_tokens>());
            } else {
                throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
            }
        }
    } else {
        throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
    }
    if (result.empty()) {
        throw std::runtime_error("\"prompt\" must not be empty");
    }
    return result;
}

// return the last index of character that can form a valid string
// if the last character is potentially cut in half, return the index before the cut
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
static size_t validate_utf8(const std::string& text) {
    size_t len = text.size();
    if (len == 0) return 0;

    // Check the last few bytes to see if a multi-byte character is cut off
    for (size_t i = 1; i <= 4 && i <= len; ++i) {
        unsigned char c = text[len - i];
        // Check for start of a multi-byte sequence from the end
        if ((c & 0xE0) == 0xC0) {
            // 2-byte character start: 110xxxxx
            // Needs at least 2 bytes
            if (i < 2) return len - i;
        } else if ((c & 0xF0) == 0xE0) {
            // 3-byte character start: 1110xxxx
            // Needs at least 3 bytes
            if (i < 3) return len - i;
        } else if ((c & 0xF8) == 0xF0) {
            // 4-byte character start: 11110xxx
            // Needs at least 4 bytes
            if (i < 4) return len - i;
        }
    }

    // If no cut-off multi-byte character is found, return full length
    return len;
}

//
// template utils
//

// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
static llama_tokens format_rerank(const struct llama_vocab * vocab, const llama_tokens & query, const llama_tokens & doc) {
    llama_tokens result;

    // Get EOS token - use SEP token as fallback if EOS is not available
    llama_token eos_token = llama_vocab_eos(vocab);
    if (eos_token == LLAMA_TOKEN_NULL) {
        eos_token = llama_vocab_sep(vocab);
    }

    result.reserve(doc.size() + query.size() + 4);
    if (llama_vocab_get_add_bos(vocab)) {
        result.push_back(llama_vocab_bos(vocab));
    }
    result.insert(result.end(), query.begin(), query.end());
    if (llama_vocab_get_add_eos(vocab)) {
        result.push_back(eos_token);
    }
    if (llama_vocab_get_add_sep(vocab)) {
        result.push_back(llama_vocab_sep(vocab));
    }
    result.insert(result.end(), doc.begin(), doc.end());
    if (llama_vocab_get_add_eos(vocab)) {
        result.push_back(eos_token);
    }

    return result;
}

// format infill task
static llama_tokens format_infill(
        const llama_vocab * vocab,
        const json & input_prefix,
        const json & input_suffix,
        const json & input_extra,
        const int n_batch,
        const int n_predict,
        const int n_ctx,
        const bool spm_infill,
        const llama_tokens & tokens_prompt
    ) {
    // TODO: optimize this block by reducing memory allocations and movement

    // use FIM repo-level pattern:
    // ref: https://arxiv.org/pdf/2409.12186
    //
    // [FIM_REP]myproject
    // [FIM_SEP]filename0
    // extra chunk 0
    // [FIM_SEP]filename1
    // extra chunk 1
    // ...
    // [FIM_SEP]filename
    // [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
    //
    llama_tokens extra_tokens;
    extra_tokens.reserve(n_ctx);

    auto tokens_prefix = tokenize_mixed(vocab, input_prefix, false, false);
    auto tokens_suffix = tokenize_mixed(vocab, input_suffix, false, false);

    if (llama_vocab_fim_rep(vocab) != LLAMA_TOKEN_NULL) {
        // TODO: make project name an input
        static const auto k_fim_repo = common_tokenize(vocab, "myproject\n", false, false);

        extra_tokens.push_back(llama_vocab_fim_rep(vocab));
        extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
    }
    for (const auto & chunk : input_extra) {
        // { "text": string, "filename": string }
        const std::string text     = json_value(chunk, "text",     std::string());
        const std::string filename = json_value(chunk, "filename", std::string("tmp"));

        if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
            const auto k_fim_file = common_tokenize(vocab, filename + "\n", false, false);

            extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
            extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
        } else {
            // chunk separator in binary form to avoid confusing the AI
            static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
            static const auto k_chunk_prefix_tokens = common_tokenize(vocab, k_chunk_prefix_str, false, false);

            extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
        }

        const auto chunk_tokens = common_tokenize(vocab, text, false, false);
        extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
    }

    if (llama_vocab_fim_sep(vocab) != LLAMA_TOKEN_NULL) {
        // TODO: current filename
        static const auto k_fim_file = common_tokenize(vocab, "filename\n", false, false);

        extra_tokens.insert(extra_tokens.end(), llama_vocab_fim_sep(vocab));
        extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
    }

    // for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
    const int n_prefix_take = std::min<int>(tokens_prefix.size(),                3*(n_batch/4));
    const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));

    SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));

    // fill the rest of the context with extra chunks
    const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());

    tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
    tokens_suffix.resize(n_suffix_take);

    tokens_prefix.insert(tokens_prefix.begin(), llama_vocab_fim_pre(vocab));
    tokens_prefix.insert(tokens_prefix.end(),   tokens_prompt.begin(), tokens_prompt.end());
    tokens_suffix.insert(tokens_suffix.begin(), llama_vocab_fim_suf(vocab));

    auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
    auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;

    if (llama_vocab_get_add_bos(vocab)) {
        embd_inp.insert(embd_inp.begin(), llama_vocab_bos(vocab));
    }

    SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());

    // put the extra context before the FIM prefix
    embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());

    embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
    embd_inp.push_back(llama_vocab_fim_mid(vocab));

    return embd_inp;
}

//
// base64 utils (TODO: move to common in the future)
//

static const std::string base64_chars =
             "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
             "abcdefghijklmnopqrstuvwxyz"
             "0123456789+/";

static inline bool is_base64(uint8_t c) {
    return (isalnum(c) || (c == '+') || (c == '/'));
}

static inline raw_buffer base64_decode(const std::string & encoded_string) {
    int i = 0;
    int j = 0;
    int in_ = 0;

    int in_len = encoded_string.size();

    uint8_t char_array_4[4];
    uint8_t char_array_3[3];

    raw_buffer ret;

    while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
        char_array_4[i++] = encoded_string[in_]; in_++;
        if (i == 4) {
            for (i = 0; i < 4; i++) {
                char_array_4[i] = base64_chars.find(char_array_4[i]);
            }

            char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
            char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
            char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];

            for (i = 0; (i < 3); i++) {
                ret.push_back(char_array_3[i]);
            }

            i = 0;
        }
    }

    if (i) {
        for (j = i; j < 4; j++) {
            char_array_4[j] = 0;
        }

        for (j = 0; j < 4; j++) {
            char_array_4[j] = base64_chars.find(char_array_4[j]);
        }

        char_array_3[0] = ((char_array_4[0]      ) << 2) + ((char_array_4[1] & 0x30) >> 4);
        char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
        char_array_3[2] = ((char_array_4[2] & 0x3) << 6) +   char_array_4[3];

        for (j = 0; j < i - 1; j++) {
            ret.push_back(char_array_3[j]);
        }
    }

    return ret;
}

//
// random string / id
//

static std::string random_string() {
    static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");

    std::random_device rd;
    std::mt19937 generator(rd());

    std::string result(32, ' ');

    for (int i = 0; i < 32; ++i) {
        result[i] = str[generator() % str.size()];
    }

    return result;
}

static std::string gen_chatcmplid() {
    return "chatcmpl-" + random_string();
}

static std::string gen_tool_call_id() {
    return random_string();
}

//
// other common utils
//

// TODO: reuse llama_detokenize
template <class Iter>
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
    std::string ret;
    for (; begin != end; ++begin) {
        ret += common_token_to_piece(ctx, *begin);
    }

    return ret;
}

// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
    std::string out = token == LLAMA_TOKEN_NULL ? "" : common_token_to_piece(ctx, token);

    // if the size is 1 and first bit is 1, meaning it's a partial character
    //   (size > 1 meaning it's already a known token)
    if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
        std::stringstream ss;
        ss << std::hex << (out[0] & 0xff);
        std::string res(ss.str());
        out = "byte: \\x" + res;
    }

    return out;
}

static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
    const std::string str =
        std::string(event) + ": " +
        data.dump(-1, ' ', false, json::error_handler_t::replace) +
        "\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).

    LOG_DBG("data stream, to_send: %s", str.c_str());

    return sink.write(str.c_str(), str.size());
}

//
// OAI utils
//

// used by /completions endpoint
static json oaicompat_completion_params_parse(const json & body) {
    json llama_params;

    if (!body.contains("prompt")) {
        throw std::runtime_error("\"prompt\" is required");
    }

    // Handle "stop" field
    if (body.contains("stop") && body.at("stop").is_string()) {
        llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
    } else {
        llama_params["stop"] = json_value(body, "stop", json::array());
    }

    // Handle "n" field
    int n_choices = json_value(body, "n", 1);
    if (n_choices != 1) {
        throw std::runtime_error("Only one completion choice is allowed");
    }

    // Handle "echo" field
    if (json_value(body, "echo", false)) {
        throw std::runtime_error("Only no echo is supported");
    }

    // Params supported by OAI but unsupported by llama.cpp
    static const std::vector<std::string> unsupported_params { "best_of", "suffix" };
    for (const auto & param : unsupported_params) {
        if (body.contains(param)) {
            throw std::runtime_error("Unsupported param: " + param);
        }
    }

    // Copy remaining properties to llama_params
    for (const auto & item : body.items()) {
        // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
        if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
            llama_params[item.key()] = item.value();
        }
    }

    return llama_params;
}

struct oaicompat_parser_options {
    bool use_jinja;
    bool prefill_assistant;
    common_reasoning_format reasoning_format;
    std::map<std::string,std::string> chat_template_kwargs;
    common_chat_templates * tmpls;
    bool allow_image;
    bool allow_audio;
    bool enable_thinking = true;
};

// used by /chat/completions endpoint
static json oaicompat_chat_params_parse(
    json & body, /* openai api json semantics */
    const oaicompat_parser_options & opt,
    std::vector<raw_buffer> & out_files)
{
    json llama_params;

    auto tools = json_value(body, "tools", json());
    auto has_tools = tools.is_array() && !tools.empty();
    auto stream = json_value(body, "stream", false);
    auto tool_choice = json_value(body, "tool_choice", std::string("auto"));

    if (!opt.use_jinja) {
        if (has_tools) {
            throw std::runtime_error("tools param requires --jinja flag");
        }
        if (tool_choice != "auto") {
            throw std::runtime_error("tool_choice param requires --jinja flag");
        }
    }

    // Handle "stop" field
    if (body.contains("stop") && body.at("stop").is_string()) {
        llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
    } else {
        llama_params["stop"] = json_value(body, "stop", json::array());
    }

    auto json_schema = json_value(body, "json_schema", json());
    auto grammar = json_value(body, "grammar", std::string());
    if (!json_schema.is_null() && !grammar.empty()) {
        throw std::runtime_error("Cannot use both json_schema and grammar");
    }

    // Handle "response_format" field
    if (body.contains("response_format")) {
        json response_format      = json_value(body, "response_format", json::object());
        std::string response_type = json_value(response_format, "type", std::string());
        if (response_type == "json_object") {
            json_schema = json_value(response_format, "schema", json::object());
        } else if (response_type == "json_schema") {
            auto schema_wrapper = json_value(response_format, "json_schema", json::object());
            json_schema = json_value(schema_wrapper, "schema", json::object());
        } else if (!response_type.empty() && response_type != "text") {
            throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
        }
    }

    // get input files
    if (!body.contains("messages")) {
        throw std::runtime_error("'messages' is required");
    }
    json & messages = body.at("messages");
    if (!messages.is_array()) {
        throw std::runtime_error("Expected 'messages' to be an array");
    }
    for (auto & msg : messages) {
        std::string role = json_value(msg, "role", std::string());
        if (role != "assistant" && !msg.contains("content")) {
            throw std::runtime_error("All non-assistant messages must contain 'content'");
        }
        if (role == "assistant") {
            if (!msg.contains("content") && !msg.contains("tool_calls")) {
                throw std::runtime_error("Assistant message must contain either 'content' or 'tool_calls'!");
            }
            if (!msg.contains("content")) {
                continue; // avoid errors with no content
            }
        }
        json & content = msg.at("content");
        if (content.is_string() || content.is_null()) {
            continue;
        }

        if (!content.is_array()) {
            throw std::runtime_error("Expected 'content' to be a string or an array");
        }

        for (auto & p : content) {
            std::string type      = json_value(p, "type", std::string());
            if (type == "image_url") {
                if (!opt.allow_image) {
                    throw std::runtime_error("image input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
                }

                json image_url  = json_value(p, "image_url", json::object());
                std::string url = json_value(image_url, "url", std::string());
                if (string_starts_with(url, "http")) {
                    // download remote image
                    // TODO @ngxson : maybe make these params configurable
                    common_remote_params params;
                    params.headers.push_back("User-Agent: llama.cpp/" + build_info);
                    params.max_size = 1024 * 1024 * 10; // 10MB
                    params.timeout  = 10; // seconds
                    SRV_INF("downloading image from '%s'\n", url.c_str());
                    auto res = common_remote_get_content(url, params);
                    if (200 <= res.first && res.first < 300) {
                        SRV_INF("downloaded %ld bytes\n", res.second.size());
                        raw_buffer data;
                        data.insert(data.end(), res.second.begin(), res.second.end());
                        out_files.push_back(data);
                    } else {
                        throw std::runtime_error("Failed to download image");
                    }

                } else {
                    // try to decode base64 image
                    std::vector<std::string> parts = string_split<std::string>(url, /*separator*/ ',');
                    if (parts.size() != 2) {
                        throw std::runtime_error("Invalid image_url.url value");
                    } else if (!string_starts_with(parts[0], "data:image/")) {
                        throw std::runtime_error("Invalid image_url.url format: " + parts[0]);
                    } else if (!string_ends_with(parts[0], "base64")) {
                        throw std::runtime_error("image_url.url must be base64 encoded");
                    } else {
                        auto base64_data = parts[1];
                        auto decoded_data = base64_decode(base64_data);
                        out_files.push_back(decoded_data);
                    }
                }

                // replace this chunk with a marker
                p["type"] = "text";
                p["text"] = mtmd_default_marker();
                p.erase("image_url");

            } else if (type == "input_audio") {
                if (!opt.allow_audio) {
                    throw std::runtime_error("audio input is not supported - hint: if this is unexpected, you may need to provide the mmproj");
                }

                json input_audio   = json_value(p, "input_audio", json::object());
                std::string data   = json_value(input_audio, "data", std::string());
                std::string format = json_value(input_audio, "format", std::string());
                // while we also support flac, we don't allow it here so we matches the OAI spec
                if (format != "wav" && format != "mp3") {
                    throw std::runtime_error("input_audio.format must be either 'wav' or 'mp3'");
                }
                auto decoded_data = base64_decode(data); // expected to be base64 encoded
                out_files.push_back(decoded_data);

                // replace this chunk with a marker
                p["type"] = "text";
                p["text"] = mtmd_default_marker();
                p.erase("input_audio");

            } else if (type != "text") {
                throw std::runtime_error("unsupported content[].type");
            }
        }
    }

    common_chat_templates_inputs inputs;
    inputs.messages              = common_chat_msgs_parse_oaicompat(messages);
    inputs.tools                 = common_chat_tools_parse_oaicompat(tools);
    inputs.tool_choice           = common_chat_tool_choice_parse_oaicompat(tool_choice);
    inputs.json_schema           = json_schema.is_null() ? "" : json_schema.dump();
    inputs.grammar               = grammar;
    inputs.use_jinja             = opt.use_jinja;
    inputs.parallel_tool_calls   = json_value(body, "parallel_tool_calls", false);
    inputs.add_generation_prompt = json_value(body, "add_generation_prompt", true);
    inputs.reasoning_format      = opt.reasoning_format;
    inputs.enable_thinking       = opt.enable_thinking;
    if (!inputs.tools.empty() && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
        if (body.contains("grammar")) {
            throw std::runtime_error("Cannot use custom grammar constraints with tools.");
        }
        llama_params["parse_tool_calls"] = true;
    }

    // merge the template args provided from command line with the args provided in the user request
    auto chat_template_kwargs_object = json_value(body, "chat_template_kwargs", json::object());
    inputs.chat_template_kwargs = opt.chat_template_kwargs;
    for (const auto & item : chat_template_kwargs_object.items()) {
        inputs.chat_template_kwargs[item.key()] = item.value().dump();
    }

    // if the assistant message appears at the end of list, we do not add end-of-turn token
    // for ex. this can be useful to modify the reasoning process in reasoning models
    bool prefill_assistant_message = !inputs.messages.empty() && inputs.messages.back().role == "assistant" && opt.prefill_assistant;
    common_chat_msg last_message;
    if (prefill_assistant_message) {
        last_message = inputs.messages.back();
        inputs.messages.pop_back();

        /* sanity check, max one assistant message at the end of the list */
        if (!inputs.messages.empty() && inputs.messages.back().role == "assistant"){
            throw std::runtime_error("Cannot have 2 or more assistant messages at the end of the list.");
        }

        /* TODO: test this properly */
        inputs.reasoning_format = COMMON_REASONING_FORMAT_NONE;

        if ( (!inputs.enable_thinking) || inputs.chat_template_kwargs.find("enable_thinking") != inputs.chat_template_kwargs.end()) {
            throw std::runtime_error("Assistant response prefill is incompatible with enable_thinking.");
        }

        inputs.add_generation_prompt = true;
    }

    // Apply chat template to the list of messages
    auto chat_params = common_chat_templates_apply(opt.tmpls, inputs);

    /* Append assistant prefilled message */
    if (prefill_assistant_message) {
        if (!last_message.content_parts.empty()) {
            for (auto & p : last_message.content_parts) {
                chat_params.prompt += p.text;
            }
        } else {
            chat_params.prompt += last_message.content;
        }
    }

    llama_params["chat_format"]      = static_cast<int>(chat_params.format);
    llama_params["prompt"]           = chat_params.prompt;
    if (!chat_params.grammar.empty()) {
        llama_params["grammar"] = chat_params.grammar;
    }
    llama_params["grammar_lazy"]     = chat_params.grammar_lazy;
    auto grammar_triggers = json::array();
    for (const auto & trigger : chat_params.grammar_triggers) {
        server_grammar_trigger ct(trigger);
        grammar_triggers.push_back(ct.to_json());
    }
    llama_params["grammar_triggers"] = grammar_triggers;
    llama_params["preserved_tokens"] = chat_params.preserved_tokens;
    llama_params["thinking_forced_open"]     = chat_params.thinking_forced_open;
    for (const auto & stop : chat_params.additional_stops) {
        llama_params["stop"].push_back(stop);
    }

    // Handle "n" field
    int n_choices = json_value(body, "n", 1);
    if (n_choices != 1) {
        throw std::runtime_error("Only one completion choice is allowed");
    }

    // Handle "logprobs" field
    // TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
    if (json_value(body, "logprobs", false)) {
        if (has_tools && stream) {
            throw std::runtime_error("logprobs is not supported with tools + stream");
        }
        llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
    } else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
        throw std::runtime_error("top_logprobs requires logprobs to be set to true");
    }

    // Copy remaining properties to llama_params
    // This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
    // See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
    for (const auto & item : body.items()) {
        // Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
        if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
            llama_params[item.key()] = item.value();
        }
    }

    return llama_params;
}

static json format_embeddings_response_oaicompat(const json & request, const json & embeddings, bool use_base64 = false) {
    json data = json::array();
    int32_t n_tokens = 0;
    int i = 0;
    for (const auto & elem : embeddings) {
        json embedding_obj;

        if (use_base64) {
            const auto& vec = json_value(elem, "embedding", json::array()).get<std::vector<float>>();
            const char* data_ptr = reinterpret_cast<const char*>(vec.data());
            size_t data_size = vec.size() * sizeof(float);
            embedding_obj = {
                {"embedding", base64::encode(data_ptr, data_size)},
                {"index", i++},
                {"object", "embedding"},
                {"encoding_format", "base64"}
            };
        } else {
            embedding_obj = {
                {"embedding", json_value(elem, "embedding", json::array())},
                {"index", i++},
                {"object", "embedding"}
            };
        }
        data.push_back(embedding_obj);

        n_tokens += json_value(elem, "tokens_evaluated", 0);
    }

    json res = json {
        {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
        {"object", "list"},
        {"usage", json {
            {"prompt_tokens", n_tokens},
            {"total_tokens", n_tokens}
        }},
        {"data", data}
    };

    return res;
}

static json format_response_rerank(
        const json & request,
        const json & ranks,
        bool is_tei_format,
        std::vector<std::string> & texts) {
    json res;
    if (is_tei_format) {
        // TEI response format
        res = json::array();
        bool return_text = json_value(request, "return_text", false);
        for (const auto & rank : ranks) {
            int index = json_value(rank, "index", 0);
            json elem = json{
                {"index", index},
                {"score", json_value(rank, "score", 0.0)},
            };
            if (return_text) {
                elem["text"] = std::move(texts[index]);
            }
            res.push_back(elem);
        }
    } else {
        // Jina response format
        json results = json::array();
        int32_t n_tokens = 0;
        for (const auto & rank : ranks) {
            results.push_back(json{
                {"index",           json_value(rank, "index", 0)},
                {"relevance_score", json_value(rank, "score", 0.0)},
            });

            n_tokens += json_value(rank, "tokens_evaluated", 0);
        }

        res = json{
            {"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
            {"object", "list"},
            {"usage", json{
                {"prompt_tokens", n_tokens},
                {"total_tokens", n_tokens}
            }},
            {"results", results}
        };
    }

    return res;
}

static bool is_valid_utf8(const std::string & str) {
    const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
    const unsigned char* end = bytes + str.length();

    while (bytes < end) {
        if (*bytes <= 0x7F) {
            // 1-byte sequence (0xxxxxxx)
            bytes++;
        } else if ((*bytes & 0xE0) == 0xC0) {
            // 2-byte sequence (110xxxxx 10xxxxxx)
            if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
                return false;
            bytes += 2;
        } else if ((*bytes & 0xF0) == 0xE0) {
            // 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
            if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
                return false;
            bytes += 3;
        } else if ((*bytes & 0xF8) == 0xF0) {
            // 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
            if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
                (bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
                return false;
            bytes += 4;
        } else {
            // Invalid UTF-8 lead byte
            return false;
        }
    }

    return true;
}

static json format_tokenizer_response(const json & tokens) {
    return json {
        {"tokens", tokens}
    };
}

static json format_detokenized_response(const std::string & content) {
    return json {
        {"content", content}
    };
}

static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
    json data = json::array();
    for (const auto & lb : logit_bias) {
        data.push_back(json{
            {"bias", lb.bias},
            {"token", lb.token},
        });
    }
    return data;
}

static std::string safe_json_to_str(const json & data) {
    return data.dump(-1, ' ', false, json::error_handler_t::replace);
}

static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
    std::vector<llama_token_data> cur;
    const auto * logits = llama_get_logits_ith(ctx, idx);

    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);

    const int n_vocab = llama_vocab_n_tokens(vocab);

    cur.resize(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
    }

    // sort tokens by logits
    std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
        return a.logit > b.logit;
    });

    // apply softmax
    float max_l = cur[0].logit;
    float cum_sum = 0.0f;
    for (size_t i = 0; i < cur.size(); ++i) {
        float p = expf(cur[i].logit - max_l);
        cur[i].p = p;
        cum_sum += p;
    }
    for (size_t i = 0; i < cur.size(); ++i) {
        cur[i].p /= cum_sum;
    }

    return cur;
}

static bool are_lora_equal(
        const std::vector<common_adapter_lora_info> & l1,
        const std::vector<common_adapter_lora_info> & l2) {
    if (l1.size() != l2.size()) {
        return false;
    }
    for (size_t i = 0; i < l1.size(); ++i) {
        // we don't check lora.path to reduce the time complexity
        if (l1[i].scale != l2[i].scale || l1[i].ptr != l2[i].ptr) {
            return false;
        }
    }
    return true;
}

// parse lora config from JSON request, returned a copy of lora_base with updated scale
static std::vector<common_adapter_lora_info> parse_lora_request(
        const std::vector<common_adapter_lora_info> & lora_base,
        const json & data) {
    std::vector<common_adapter_lora_info> lora(lora_base);
    int max_idx = lora.size();

    // clear existing value
    for (auto & entry : lora) {
        entry.scale = 0.0f;
    }

    // set value
    for (const auto & entry : data) {
        int id      = json_value(entry, "id", -1);
        float scale = json_value(entry, "scale", 0.0f);
        if (0 <= id && id < max_idx) {
            lora[id].scale = scale;
        } else {
            throw std::runtime_error("invalid adapter id");
        }
    }

    return lora;
}

//
// utils for interacting with libmtmd
// (may need to refactor in near future)
//

/**
 * server_tokens is a helper to manage the input tokens and image for the server.
 * it is made this way to simplify the logic of KV cache management.
 */
struct server_tokens {
    bool has_mtmd = false;

private: // disallow accessing these members directly, risking out-of-sync

    // map a **start** position in tokens to the image chunk
    std::unordered_map<llama_pos, mtmd::input_chunk_ptr> map_pos_to_media;

    // list of tokens
    // it can include LLAMA_TOKEN_NULL, which is used to indicate a token that is not a text token
    // a mtmd_input_chunk can occupy multiple tokens, one llama_token per **position**
    // important: for models using mrope, an image can contain multiple tokens but will use only one **position**
    llama_tokens tokens;

    // for ex. with input of 5 text tokens and 2 images:
    //      [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
    // pos  0   1   2   3   4   5      6      7      8      9
    // map_pos_to_media will contain: {5, img0}, {8, img1}

public:
    server_tokens() = default;
    ~server_tokens() = default;

    // Prevent copying
    server_tokens(const server_tokens&) = delete;
    server_tokens& operator=(const server_tokens&) = delete;

    // Allow moving (usually implicitly generated if members are movable)
    server_tokens(server_tokens&&) = default;
    server_tokens& operator=(server_tokens&&) = default;

    // Allow accessing elements using [] operator
    llama_token operator[](size_t index) { return tokens[index]; }
    const llama_token& operator[](size_t index) const { return tokens[index]; }

    server_tokens(mtmd::input_chunks & mtmd_chunks, bool has_mtmd) : has_mtmd(has_mtmd) {
        for (size_t i = 0; i < mtmd_chunks.size(); ++i) {
            push_back(mtmd_chunks[i]);
        }
    }

    server_tokens(llama_tokens & tokens, bool has_mtmd) : has_mtmd(has_mtmd), tokens(tokens) {}

    // for debugging
    std::string str() const {
        std::ostringstream oss;
        oss << "tokens: ";
        for (const auto & t : tokens) {
            if (t == LLAMA_TOKEN_NULL) {
                oss << "<embd> ";
            } else {
                oss << t << " ";
            }
        }
        oss << "\n";
        oss << "image pos: ";
        for (const auto & it : map_pos_to_media) {
            oss << it.first << ", ";
        }
        return oss.str();
    }

    const mtmd::input_chunk_ptr & find_chunk(llama_pos pos) const {
        auto it = map_pos_to_media.find(pos);
        if (it != map_pos_to_media.end()) {
            return it->second;
        } else {
            throw std::runtime_error("Chunk not found");
        }
    }

    void push_back(llama_token tok) {
        if (tok == LLAMA_TOKEN_NULL) {
            throw std::runtime_error("Invalid token");
        }
        tokens.emplace_back(tok);
    }

    // will create a copy of the chunk if it contains non-text data
    void push_back(const mtmd_input_chunk * chunk) {
        auto type = mtmd_input_chunk_get_type(chunk);
        if (type == MTMD_INPUT_CHUNK_TYPE_IMAGE || type == MTMD_INPUT_CHUNK_TYPE_AUDIO) {
            GGML_ASSERT(has_mtmd);
            const int n_pos = mtmd_input_chunk_get_n_pos(chunk);
            llama_pos start_pos = tokens.size();
            for (int i = 0; i < n_pos; ++i) {
                tokens.emplace_back(LLAMA_TOKEN_NULL);
            }
            mtmd::input_chunk_ptr new_chunk(mtmd_input_chunk_copy(chunk));
            map_pos_to_media[start_pos] = std::move(new_chunk);
        } else if (type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
            size_t n_tokens;
            auto text_tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
            for (size_t i = 0; i < n_tokens; ++i) {
                push_back(text_tokens[i]);
            }
        } else {
            GGML_ABORT("Invalid chunk type");
        }
    }

    // for compatibility with context shift and prompt truncation
    void insert(const llama_tokens & inp_tokens) {
        GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
        tokens.insert(tokens.end(), inp_tokens.begin(), inp_tokens.end());
    }

    // for compatibility with speculative decoding, ctx shift, slot save/load
    const llama_tokens & get_text_tokens() const {
        GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
        return tokens;
    }

    // for compatibility with speculative decoding
    void set_token(llama_pos pos, llama_token id) {
        GGML_ASSERT(!has_mtmd); // only allow this if mtmd is disabled
        tokens[pos] = id;
    }

    size_t size() const {
        return tokens.size();
    }

    bool empty() const {
        return tokens.empty();
    }

    void clear() {
        tokens.clear();
    }

    void keep_first(size_t n) {
        GGML_ASSERT(n <= tokens.size());
        if (has_mtmd) {
            if (n == tokens.size()) {
                return; // nothing to do
            }
            // we throw an error if we try to remove a token in the middle of an image
            // for ex. with input of 5 text tokens and 2 images:
            //    [0] [1] [2] [3] [4] [img0] [img0] [img0] [img1] [img1]
            // n  1   2   3   4   5   6      7      8      9      10
            // allowed to resize      ^                    ^
            // disallowed to resize          ^      ^             ^
            if (n > 0) {
                llama_token last_token = tokens[n - 1];
                // make sure we never remove tokens in the middle of an image
                if (last_token == LLAMA_TOKEN_NULL) {
                    find_chunk(n - 1); // will throw an error if the token is not begin-of-chunk
                }
            }
            // remove all image chunks that are not used anymore
            for (auto it = map_pos_to_media.begin(); it != map_pos_to_media.end(); ) {
                llama_pos pos = it->first;
                if (pos >= (llama_pos)n) {
                    it = map_pos_to_media.erase(it);
                } else {
                    ++it;
                }
            }
        }
        tokens.resize(n);
    }

    std::string detokenize(const llama_context * ctx, bool special) const {
        llama_tokens text_tokens;
        text_tokens.reserve(tokens.size());
        for (const auto & t : tokens) {
            if (t != LLAMA_TOKEN_NULL) {
                text_tokens.push_back(t);
            }
        }
        return common_detokenize(ctx, text_tokens, special);
    }

    size_t get_common_prefix(const server_tokens & b) const {
        size_t max_idx = std::min(tokens.size(), b.tokens.size());
        for (size_t i = 0; i < max_idx; ++i) {
            auto & ai =   tokens[i];
            auto & bi = b.tokens[i];

            if (ai == LLAMA_TOKEN_NULL && bi == LLAMA_TOKEN_NULL) {
                GGML_ASSERT(has_mtmd);
                const auto & a_chunk =   find_chunk(i);
                const auto & b_chunk = b.find_chunk(i);
                GGML_ASSERT(a_chunk && b_chunk);
                std::string ai_id  = mtmd_input_chunk_get_id(a_chunk.get());
                std::string bi_id  = mtmd_input_chunk_get_id(b_chunk.get());
                size_t a_pos       = mtmd_input_chunk_get_n_pos(a_chunk.get());
                size_t b_pos       = mtmd_input_chunk_get_n_pos(b_chunk.get());
                if (ai_id == bi_id && a_pos == b_pos) {
                    GGML_ASSERT(a_pos > 0 && "Invalid media chunk"); // should never happen
                    i += a_pos - 1; // will be +1 by the for loop
                    continue;
                } else {
                    return i;
                }
            } else if (ai == bi) {
                continue;
            } else {
                return i;
            }
        }
        return max_idx; // all tokens are equal
    }

    // make sure all text tokens are within the vocab range
    bool validate(const struct llama_context * ctx) const {
        const llama_model * model = llama_get_model(ctx);
        const llama_vocab * vocab = llama_model_get_vocab(model);
        const int32_t n_vocab = llama_vocab_n_tokens(vocab);

        for (size_t i = 0; i < tokens.size(); ++i) {
            auto & t = tokens[i];
            if (t == LLAMA_TOKEN_NULL) {
                try {
                    const auto & chunk = find_chunk(i);
                    size_t n_pos = mtmd_input_chunk_get_n_pos(chunk.get());
                    i += n_pos - 1; // will be +1 by the for loop
                } catch (const std::exception & e) {
                    return false;
                }
            } else if (t < 0 || t >= n_vocab) {
                return false;
            }
        }
        return true;
    }

    // encode and decode the image chunk
    int32_t process_chunk(
                llama_context * ctx,
                mtmd_context * mctx,
                llama_pos n_past,
                int32_t seq_id,
                llama_pos & n_pos_out) {
        auto & chunk = find_chunk(n_past);
        const char * name = mtmd_input_chunk_get_type(chunk.get()) == MTMD_INPUT_CHUNK_TYPE_IMAGE
                            ? "image" : "audio";
        SRV_INF("processing %s...\n", name);
        int32_t n_batch = llama_n_batch(ctx);
        int64_t t0 = ggml_time_ms();
        llama_pos new_n_past = n_past;
        int32_t result = mtmd_helper_eval_chunk_single(mctx, ctx,
            chunk.get(),
            n_past,
            seq_id,
            n_batch,
            true, // logits last
            &new_n_past);
        SRV_INF("%s processed in %" PRId64 " ms\n", name, ggml_time_ms() - t0);
        if (result != 0) {
            LOG_ERR("mtmd_helper_eval failed with status %d", result);
            n_pos_out = n_past;
            return result;
        }
        n_pos_out = new_n_past;
        return 0;
    }
};

// Computes FNV-1a hash of the data
static std::string fnv_hash(const uint8_t * data, size_t len) {
    const uint64_t fnv_prime = 0x100000001b3ULL;
    uint64_t hash = 0xcbf29ce484222325ULL;

    for (size_t i = 0; i < len; ++i) {
        hash ^= data[i];
        hash *= fnv_prime;
    }
    return std::to_string(hash);
}