File: SYCL.md

package info (click to toggle)
llama.cpp 5882%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 34,040 kB
  • sloc: cpp: 189,548; ansic: 115,889; python: 24,977; objc: 6,050; sh: 5,819; lisp: 5,741; makefile: 1,293; javascript: 807; xml: 259
file content (815 lines) | stat: -rw-r--r-- 33,984 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
# llama.cpp for SYCL

- [Background](#background)
- [Recommended Release](#recommended-release)
- [News](#news)
- [OS](#os)
- [Hardware](#hardware)
- [Docker](#docker)
- [Linux](#linux)
- [Windows](#windows)
- [Environment Variable](#environment-variable)
- [Known Issue](#known-issues)
- [Q&A](#qa)
- [TODO](#todo)

## Background

**SYCL** is a high-level parallel programming model designed to improve developers productivity writing code across various hardware accelerators such as CPUs, GPUs, and FPGAs. It is a single-source language designed for heterogeneous computing and based on standard C++17.

**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to Intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:

- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.

### Llama.cpp + SYCL

The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.

## Recommended Release

The following releases are verified and recommended:

|Commit ID|Tag|Release|Verified  Platform| Update date|
|-|-|-|-|-|
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |ArcB580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||


## News

- 2025.2
  - Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
    |GPU|Base tokens/s|Increased tokens/s|Percent|
    |-|-|-|-|
    |PVC 1550|39|73|+87%|
    |Flex 170|39|50|+28%|
    |Arc770|42|55|+30%|
    |MTL|13|16|+23%|
    |ARL-H|14|17|+21%|

- 2024.11
  - Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.

- 2024.8
  - Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.

- 2024.5
  - Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
  - Arch Linux is verified successfully.

- 2024.4
  - Support data types: GGML_TYPE_IQ4_NL, GGML_TYPE_IQ4_XS, GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ3_S, GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M.

- 2024.3
  - Release binary files of Windows.
  - A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
  - New base line is ready: [tag b2437](https://github.com/ggml-org/llama.cpp/tree/b2437).
  - Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
  - Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
  - Support detecting all GPUs with level-zero and same top **Max compute units**.
  - Support OPs
    - hardsigmoid
    - hardswish
    - pool2d

- 2024.1
  - Create SYCL backend for Intel GPU.
  - Support Windows build

## OS

| OS      | Status  | Verified                                       |
|---------|---------|------------------------------------------------|
| Linux   | Support | Ubuntu 22.04, Fedora Silverblue 39, Arch Linux |
| Windows | Support | Windows 11                                     |


## Hardware

### Intel GPU

SYCL backend supports Intel GPU Family:

- Intel Data Center Max Series
- Intel Flex Series, Arc Series
- Intel Built-in Arc GPU
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).

#### Verified devices

| Intel GPU                     | Status  | Verified Model                        |
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series  | Support | Max 1550, 1100                        |
| Intel Data Center Flex Series | Support | Flex 170                              |
| Intel Arc Series              | Support | Arc 770, 730M, Arc A750, B580         |
| Intel built-in Arc GPU        | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
| Intel iGPU                    | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7  |

*Notes:*

- **Memory**
  - The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
  - Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.

- **Execution Unit (EU)**
  - If the iGPU has less than 80 EUs, the inference speed will likely be too slow for practical use.

### Other Vendor GPU

**Verified devices**

| Nvidia GPU               | Status    | Verified Model |
|--------------------------|-----------|----------------|
| Ampere Series            | Supported | A100, A4000    |
| Ampere Series *(Mobile)* | Supported | RTX 40 Series  |

| AMD GPU                  | Status       | Verified Model |
|--------------------------|--------------|----------------|
| Radeon Pro               | Experimental | W6800          |
| Radeon RX                | Experimental | 6700 XT        |

Note: AMD GPU support is highly experimental and is incompatible with F16.
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.

## Docker

The docker build option is currently limited to *Intel GPU* targets.

### Build image

```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```

*Notes*:

To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.

You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.

### Run container

```sh
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```

*Notes:*
- Docker has been tested successfully on native Linux. WSL support has not been verified yet.
- You may need to install Intel GPU driver on the **host** machine *(Please refer to the [Linux configuration](#linux) for details)*.

## Linux

### I. Setup Environment

1. **Install GPU drivers**

  - **Intel GPU**

Intel data center GPUs drivers installation guide and download page can be found here: [Get intel dGPU Drivers](https://dgpu-docs.intel.com/driver/installation.html#ubuntu-install-steps).

*Note*: for client GPUs *(iGPU & Arc A-Series)*, please refer to the [client iGPU driver installation](https://dgpu-docs.intel.com/driver/client/overview.html).

Once installed, add the user(s) to the `video` and `render` groups.

```sh
sudo usermod -aG render $USER
sudo usermod -aG video $USER
```

*Note*: logout/re-login for the changes to take effect.

Verify installation through `clinfo`:

```sh
sudo apt install clinfo
sudo clinfo -l
```

Sample output:

```sh
Platform #0: Intel(R) OpenCL Graphics
 `-- Device #0: Intel(R) Arc(TM) A770 Graphics

Platform #0: Intel(R) OpenCL HD Graphics
 `-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```

- **Nvidia GPU**

In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.

- **AMD GPU**

To target AMD GPUs with SYCL, the ROCm stack must be installed first.

2. **Install Intel® oneAPI Base toolkit**

- **For Intel GPU**

The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.

Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.

Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.

Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.

- **Adding support to Nvidia GPUs**

**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.

**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:

```sh
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```

- **Adding support to AMD GPUs**

**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.

3. **Verify installation and environment**

In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
```sh
source /opt/intel/oneapi/setvars.sh
sycl-ls
```

- **Intel GPU**

When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:

```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO  [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```

- **Nvidia GPU**

Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:

```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
```

- **AMD GPU**

For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:

```
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
```

### II. Build llama.cpp

#### Intel GPU

```sh
./examples/sycl/build.sh
```

or

```sh
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh

# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx

# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON

# build all binary
cmake --build build --config Release -j -v
```

It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`

#### Nvidia GPU

The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.

```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture

# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl

# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl

# build all binary
cmake --build build --config Release -j -v
```

It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.

#### AMD GPU

The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.

```sh
# Build LLAMA with rocBLAS acceleration through SYCL

## AMD
# Use FP32, FP16 is not supported
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx

# build all binary
cmake --build build --config Release -j -v
```

### III. Run the inference

#### Retrieve and prepare model

You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).

##### Check device

1. Enable oneAPI running environment

```sh
source /opt/intel/oneapi/setvars.sh
```

2. List devices information

Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:

```sh
./build/bin/llama-ls-sycl-device
```

This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *intel GPU* it would look like the following:
```
found 2 SYCL devices:

|  |                  |                                             |Compute   |Max compute|Max work|Max sub|               |
|ID|       Device Type|                                         Name|capability|units      |group   |group  |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       1.3|        512|    1024|     32|    16225243136|
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|
```

#### Choose level-zero devices

|Chosen Device ID|Setting|
|-|-|
|0|`export ONEAPI_DEVICE_SELECTOR="level_zero:0"` or no action|
|1|`export ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|0 & 1|`export ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"`|

#### Execute

Choose one of following methods to run.

1. Script

- Use device 0:

```sh
./examples/sycl/run-llama2.sh 0
# OR
./examples/sycl/run-llama3.sh 0
```
- Use multiple devices:

```sh
./examples/sycl/run-llama2.sh
# OR
./examples/sycl/run-llama3.sh
```

2. Command line
Launch inference

There are two device selection modes:

- Single device: Use one device assigned by user. Default device id is 0.
- Multiple devices: Automatically choose the devices with the same backend.

In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.

| Device selection | Parameter                              |
|------------------|----------------------------------------|
| Single device    | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default)           |

Examples:

- Use device 0:

```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
```

- Use multiple devices:

```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
```

*Notes:*

- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:

```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```
Or
```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```

## Windows

### I. Setup Environment

1. Install GPU driver

Intel GPU drivers instructions guide and download page can be found here: [Get Intel GPU Drivers](https://www.intel.com/content/www/us/en/products/docs/discrete-gpus/arc/software/drivers.html).

2. Install Visual Studio

If you already have a recent version of Microsoft Visual Studio, you can skip this step. Otherwise, please refer to the official download page for [Microsoft Visual Studio](https://visualstudio.microsoft.com/).

3. Install Intel® oneAPI Base toolkit

The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.

Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.

Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.

b. Enable oneAPI running environment:

- Type "oneAPI" in the search bar, then open the `Intel oneAPI command prompt for Intel 64 for Visual Studio 2022` App.

- On the command prompt, enable the runtime environment with the following:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```

- if you are using Powershell, enable the runtime environment with the following:

```
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
```

c. Verify installation

In the oneAPI command line, run the following to print the available SYCL devices:

```
sycl-ls.exe
```

There should be one or more *level-zero* GPU devices displayed as **[ext_oneapi_level_zero:gpu]**. Below is example of such output detecting an *intel Iris Xe* GPU as a Level-zero SYCL device:

Output (example):
```
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2  [2023.16.10.0.17_160000]
[opencl:cpu:1] Intel(R) OpenCL, 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Iris(R) Xe Graphics OpenCL 3.0 NEO  [31.0.101.5186]
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Iris(R) Xe Graphics 1.3 [1.3.28044]
```

4. Install build tools

a. Download & install cmake for Windows: https://cmake.org/download/ (CMake can also be installed from Visual Studio Installer)
b. The new Visual Studio will install Ninja as default. (If not, please install it manually: https://ninja-build.org/)


### II. Build llama.cpp

You could download the release package for Windows directly, which including binary files and depended oneAPI dll files.

Choose one of following methods to build from source code.

#### 1. Script

```sh
.\examples\sycl\win-build-sycl.bat
```

#### 2. CMake

On the oneAPI command line window, step into the llama.cpp main directory and run the following:

```
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force

# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release

# Option 2: Or FP16
cmake -B build -G "Ninja" -DGGML_SYCL=ON -DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx  -DCMAKE_BUILD_TYPE=Release -DGGML_SYCL_F16=ON

cmake --build build --config Release -j
```

Or, use CMake presets to build:

```sh
cmake --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli

cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli

cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```

#### 3. Visual Studio

You have two options to use Visual Studio to build llama.cpp:
- As CMake Project using CMake presets.
- Creating a Visual Studio solution to handle the project.

**Note**:

All following commands are executed in PowerShell.

##### - Open as a CMake Project

You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:

- `x64-windows-sycl-release`

- `x64-windows-sycl-debug`

*Notes:*
- For a minimal experimental setup, you can build only the inference executable using:

    ```Powershell
    cmake --build build --config Release -j --target llama-cli
    ```

##### - Generating a Visual Studio Solution

You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.

If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:

```Powershell
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
```

If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):

```Powershell
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
      -DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
      -DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
```

If successful the build files have been written to: *path/to/llama.cpp/build*
Open the project file **build/llama.cpp.sln** with Visual Studio.

Once the Visual Studio solution is created, follow these steps:

1. Open the solution in Visual Studio.

2. Right-click on `ggml-sycl` and select **Properties**.

3. In the left column, expand **C/C++** and select **DPC++**.

4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.

5. Apply the changes and save.


*Navigation Path:*

```
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
```

Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
To do it from menu: `Build -> Build Solution`.
Once it is completed, final results will be in **build/Release/bin**

*Additional Note*

- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:

    - `SYCL_INCLUDE_DIR_HINT`

    - `SYCL_LIBRARY_DIR_HINT`

- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.

### III. Run the inference

#### Retrieve and prepare model

You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).

##### Check device

1. Enable oneAPI running environment

On the oneAPI command line window, run the following and step into the llama.cpp directory:
```
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```

2. List devices information

Similar to the native `sycl-ls`, available SYCL devices can be queried as follow:

```
build\bin\llama-ls-sycl-device.exe
```

This command will only display the selected backend that is supported by SYCL. The default backend is level_zero. For example, in a system with 2 *Intel GPU* it would look like the following:
```
found 2 SYCL devices:
|  |                  |                                             |Compute   |Max compute|Max work|Max sub|               |
|ID|       Device Type|                                         Name|capability|units      |group   |group  |Global mem size|
|--|------------------|---------------------------------------------|----------|-----------|--------|-------|---------------|
| 0|[level_zero:gpu:0]|               Intel(R) Arc(TM) A770 Graphics|       1.3|        512|    1024|     32|    16225243136|
| 1|[level_zero:gpu:1]|                    Intel(R) UHD Graphics 770|       1.3|         32|     512|     32|    53651849216|

```

#### Choose level-zero devices

|Chosen Device ID|Setting|
|-|-|
|0|Default option. You may also want to `set ONEAPI_DEVICE_SELECTOR="level_zero:0"`|
|1|`set ONEAPI_DEVICE_SELECTOR="level_zero:1"`|
|0 & 1|`set ONEAPI_DEVICE_SELECTOR="level_zero:0;level_zero:1"` or `set ONEAPI_DEVICE_SELECTOR="level_zero:*"`|

#### Execute

Choose one of following methods to run.

1. Script

```
examples\sycl\win-run-llama-2.bat
```

or

```
examples\sycl\win-run-llama-3.bat
```

2. Command line

Launch inference

There are two device selection modes:

- Single device: Use one device assigned by user. Default device id is 0.
- Multiple devices: Automatically choose the devices with the same backend.

In two device selection modes, the default SYCL backend is level_zero, you can choose other backend supported by SYCL by setting environment variable ONEAPI_DEVICE_SELECTOR.

| Device selection | Parameter                              |
|------------------|----------------------------------------|
| Single device    | --split-mode none --main-gpu DEVICE_ID |
| Multiple devices | --split-mode layer (default)           |

Examples:

- Use device 0:

```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
```

- Use multiple devices:

```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
```


Note:

- Upon execution, verify the selected device(s) ID(s) in the output log, which can for instance be displayed as follow:

```sh
detect 1 SYCL GPUs: [0] with top Max compute units:512
```

Or

```sh
use 1 SYCL GPUs: [0] with Max compute units:512
```


## Environment Variable

#### Build

| Name               | Value                                 | Function                                    |
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL          | ON (mandatory)                        | Enable build with SYCL code path.           |
| GGML_SYCL_TARGET   | INTEL *(default)* \| NVIDIA \| AMD    | Set the SYCL target device type.            |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD)             | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16      | OFF *(default)* \|ON *(optional)*     | Enable FP16 build with SYCL code path. (1.) |
| GGML_SYCL_GRAPH    | ON *(default)* \|OFF *(Optional)*     | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| GGML_SYCL_DNN      | ON *(default)* \|OFF *(Optional)*     | Enable build with oneDNN.                   |
| CMAKE_C_COMPILER   | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path.      |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)*   | Set `icpx/icx` compiler for SYCL code path. |

1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.

#### Runtime

| Name              | Value            | Function                                                                                                                  |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG   | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG                                                                             |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |


## Known Issues

- `Split-mode:[row]` is not supported.

## Q&A

- Error:  `error while loading shared libraries: libsycl.so: cannot open shared object file: No such file or directory`.

  - Potential cause: Unavailable oneAPI installation or not set ENV variables.
  - Solution: Install *oneAPI base toolkit* and enable its ENV through: `source /opt/intel/oneapi/setvars.sh`.

- General compiler error:

  - Remove **build** folder or try a clean-build.

- I can **not** see `[ext_oneapi_level_zero:gpu]` afer installing the GPU driver on Linux.

  Please double-check with `sudo sycl-ls`.

  If it's present in the list, please add video/render group to your user then **logout/login** or restart your system:

  ```
  sudo usermod -aG render $USER
  sudo usermod -aG video $USER
  ```
  Otherwise, please double-check the GPU driver installation steps.

- Can I report Ollama issue on Intel GPU to llama.cpp SYCL backend?

  No. We can't support Ollama issue directly, because we aren't familiar with Ollama.

  Sugguest reproducing on llama.cpp and report similar issue to llama.cpp. We will surpport it.

  It's same for other projects including llama.cpp SYCL backend.

- `Native API failed. Native API returns: 39 (UR_RESULT_ERROR_OUT_OF_DEVICE_MEMORY)`, `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 3503030272 Bytes of memory on device`, or `failed to allocate SYCL0 buffer`

  You are running out of Device Memory.

  |Reason|Solution|
  |-|-|
  | The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
  | The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|

### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.

## TODO

- Review ZES_ENABLE_SYSMAN: https://github.com/intel/compute-runtime/blob/master/programmers-guide/SYSMAN.md#support-and-limitations